

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

White Con

*	
0	
5	
7	
W	
ъ	
W	
0	
6	
_	
6	
·	

CANDIDATE NAME				
CENTRE NUMBER		ANDIDATE JMBER		

CO-ORDINATED SCIENCES

0654/31

Paper 3 (Extended)

October/November 2010

2 hours

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use a soft pencil for any diagrams, graphs, tables or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO **NOT** WRITE IN ANY BARCODES.

Answer all questions.

A copy of the Periodic Table is printed on page 28.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

For Exam	iner's Use
1	
2	
3	
4	
5	
6	
7	
8	
9	
Total	

This document consists of 26 printed pages and 2 blank pages.

1 Fig. 1.1 shows the apparatus a student used to study the rate of reaction between powdered metal and dilute hydrochloric acid.

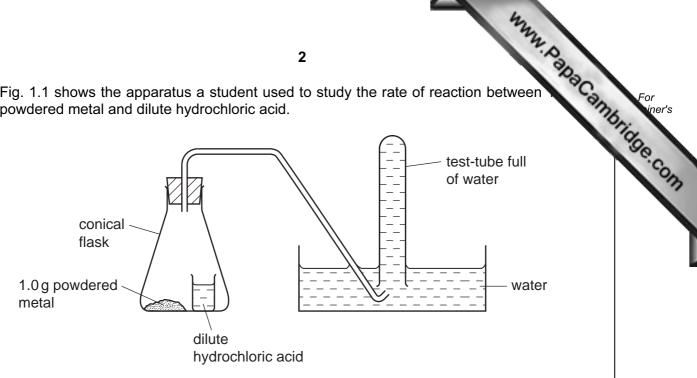


Fig. 1.1

When the student tilted the conical flask, the acid mixed with the powdered metal. If a reaction occurred, any gas which was produced collected in the test-tube, pushing the water out. The student measured the time taken for the test-tube to fill with gas.

	(a)	(i)	Name the gas	produced when	metals react with	dilute h	ydrochloric	acid
--	-----	-----	--------------	---------------	-------------------	----------	-------------	------

		[1]
(ii)	State the formula of the <i>ion</i> which is present in relatively high concentrations in acids.	all
		[1]

(b) The student used the apparatus and method described above to compare the rates of reaction between dilute hydrochloric acid and three powdered metals, X, Y and Z.

The results the student obtained are shown in Table 1.1.

Table 1.1

metal	mass of metal/g	time for gas to fill the test-tube/ seconds
X	1.0	154
Y	1.0	28
Z	1.0	76

www.papaCambridge.com (i) The student was careful to ensure that the only variable (factor) which between the experiments was the type of metal. State two variables, other than the mass and surface area of the metals, which the student must keep the same in each experiment. 1 2 (ii) Explain how the results show that the rate of reaction was the lowest when metal X was used. [1] (iii) The student repeated the experiment with metal Y but this time he used a single piece of metal which had a mass of 1.0 g. State how the rate of reaction would differ from the experiment in which 1.0 g of powdered metal was used. Explain your answer in terms of the collisions between atoms in the surface of the metal and ions in the solution.

		4.	
		4	
		20	
(c)		den magnesium reacts with dilute hydrochloric acid, HCl, one of the production gnesium chloride, MgCl ₂ . Construct a balanced symbolic equation for this reaction. [2]	's
	(i)	Construct a balanced symbolic equation for this reaction.	
		[2]	3
	(ii)	Magnesium chloride is a compound which causes hardness in water.	
		Describe briefly how the process of <i>ion exchange</i> is used to soften hard water. You may draw a simple diagram if it helps you to answer this question.	
		[2]	

GRECGAMBRIDGE.COM

Please turn over for Question 2.

2 Fig. 2.1 shows a mobile phone (cell phone).

mobile phone containing a battery

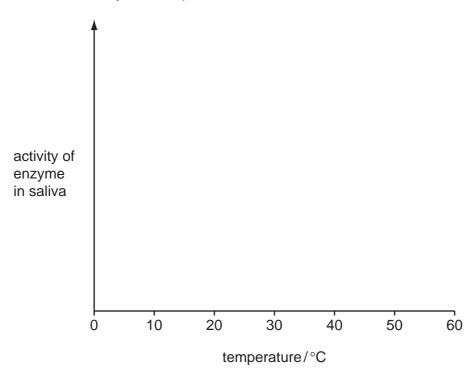
Fig. 2.1

(a)	Energy is stored inside the mobile phone in a battery.	
	Describe the energy changes taking place when the battery is being charged.	
		[2]
(b)	The quality of digital signals is maintained far better than that of analogue signals. Explain why.	
		[2]

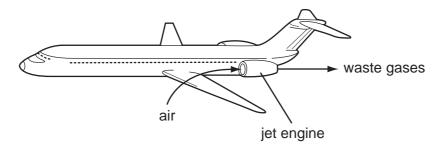
For iner's

(c) The strength of phone cases can be tested by dropping the phones onto a surfaces from a height of 2 m.

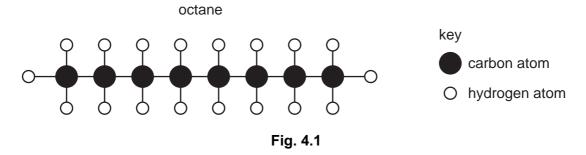
www.PapaCambridge.com A phone of mass 80 g is dropped onto a concrete path. The case breaks when it hits the concrete. When an identical mobile phone is dropped onto a soft carpet from the same height, the case does not break.


	-
(i)	State the momentum of each phone after it has landed on the surface.
	[1]
(ii)	As a phone was about to hit the concrete path, its momentum was $1.2\mathrm{kg}\mathrm{m/s}$. It took $0.03\mathrm{s}$ to stop.
	The force it experienced as it hit is given by the formula
	force = $\frac{\text{change in momentum}}{\text{time taken to stop}}$
	Calculate this force.
	Show your working.
	[2]
(iii)	The phones that hit the concrete and the soft carpet had the same change in momentum. Suggest why the phone dropped onto the soft carpet did not break.
	[2]

www.PapaCambridge.com Fig. 3.1 shows a generalised reflex arc. 3 neurone central nervous neurone neurone system X receptor effector Fig. 3.1 (a) (i) Name the neurones labelled X, Y and Z. Υ Ζ [3] (ii) Name one part of the central nervous system in which neurone Y might be found. [1] (b) A student hears a sudden, loud bang. Receptors in his ear respond to the sound by generating electrical impulses in neurone X. These impulses travel along the reflex arc, eventually reaching an effector. Suggest what the effector could be in this reflex, and how it would respond. response (c) Another reflex action involves the secretion of saliva into the mouth in response to the smell of food. (i) Describe the role of saliva in the digestion of food.


(ii) Explain why it is necessary for most types of food that we eat to be digested.

[2]


(iii) On the axes below, sketch a curve to show how the activity of enzyme from human saliva would vary with temperature.

www.papaCambridge.com 4 In jet engines, hydrocarbon molecules from the jet fuel mix with air and burn. This rea large amount of energy and produces a mixture of waste gases. These waste gases out through the back of the jet engine into the atmosphere.

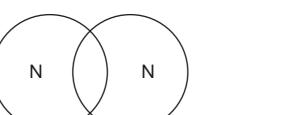
(a) Fig. 4.1 shows a molecule of octane, which is a typical hydrocarbon molecule in jet fuel.

(i) State the chemical formula of octane.

		[1]
--	--	-----

(ii) Complete the word equation below for the complete combustion of octane.

[2]


(b) The mixture of waste gases coming from the jet engine contains a large amount of the free element nitrogen, N2, which exists naturally in the air. The atoms in a nitrogen molecule are held together by a triple covalent bond as shown in the displayed formula below.

$$N \equiv N$$

(i) State the number of outer electrons in a single nitrogen atom.

	[1	1
***************************************	•	-

www.PapaCambridge.com (ii) Complete the bonding diagram below to show how the outer electronarranged around the atoms in a nitrogen molecule.

[2]

(iii)	The temperature inside the jet engine is very high.
	Suggest why most of the nitrogen molecules which pass through the engine do not break up into individual atoms.
	[2]

Table 4.1

ıbl	le 4.1 shows information a	12 about some metallic mat	erials. density
		Table 4.1	
	material	strength	density
	mild steel	very high	very high
	aluminium	low	low
	duralumin (an aluminium alloy)	very high	low

(i)	Duralumin is used in the manufacture of aircraft.
	Explain why the properties of this material make it suitable for this purpose.
	[2]
(ii)	A sample of duralumin has a mass of 50.00 g and contains 1.73 moles of aluminium.
	Calculate the percentage by mass of aluminium in this sample of duralumin.
	Show your working.
	[3]

BLANK PAGE

Please turn over for Question 5.

www.papaCambridge.com

- 5

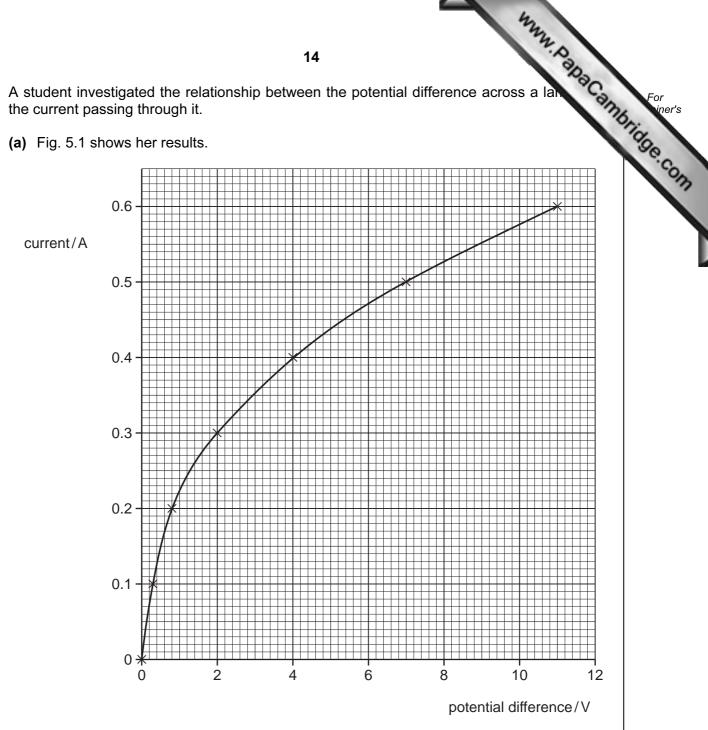


Fig. 5.1

(1)	what is the current when the potential unference is 6 v?	
		[1]

			15	. A	1
ii)	Calculate the resistan	ice of the lamp	when the potential differer	nce is 6 V.	aCan
	State the formula that	you use and s	how your working.	`	19
	formula used			nce is 6 V.	
	working				
					[2]
	owing experiments.		and a bar of soft iron. ther with like poles facing.	She carried out	the
foll	owing experiments.			٦	the
foll	owing experiments. She brought the magi	nets close toge	ther with like poles facing.	٦	the
foll	owing experiments. She brought the magi	nets close toge	ther with like poles facing.	٦	the
foll	owing experiments. She brought the magi	nets close toge	ther with like poles facing.	٦	the [1]
foll	owing experiments. She brought the magi	nets close toge S ved.	ther with like poles facing.	٦	
foll	owing experiments. She brought the magning in the	nets close toge S ved.	ther with like poles facing.	٦	
foll	owing experiments. She brought the magning in the	ron bar towards	s one of the magnets.	٦	
foll	owing experiments. She brought the magning in the	ron bar towards	s one of the magnets.	٦	

(c) Fig. 5.2 shows a strip of aluminium foil hung between the poles of a magnet. We current is switched on, the foil experiences a force as shown.

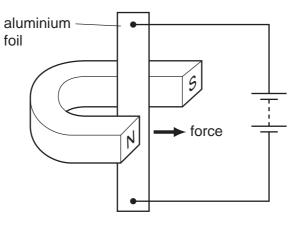


Fig. 5.2

(i)	Explain why a force is produced.	
		 2]
(ii)	State two changes which would increase the size of the force acting on the aluminium foil.	e
	1	
	2	2]

	www.
	17 A. P.
(d)	A transformer used in a television set has 100 turns on the primary coil.
	The potential difference across the primary coil is 240 V and the potential difference across the secondary coil is 35 000 V.
	Calculate the number of turns on the secondary coil.
	Use the formula $V_p/V_s = N_p/N_s$.

Show your working.

[2]

6 The gray wolf, *Canis lupus*, is a predator. In Wisconsin, Canada, the wolves' diet of mainly of white-tailed deer, beavers, snowshoe hares and mice.

(a)	White-tailed	deer eat	grasses	and other	plants.
-----	--------------	----------	---------	-----------	---------

(i)	Construct a	food chain	including	white-tailed	deer an	d wolves.
-----	-------------	------------	-----------	--------------	---------	-----------

[1]

(ii)	Sketch a pyramid of biomass for the food chain you have constructed in (i). Labe
	the trophic levels in your pyramid.

[3]

(iii)	With reference to your answers in (i) and (ii), suggest why wolves are rarent white-tailed deer.	than
		121

www.PapaCambridge.com (b) People used to shoot gray wolves. In 1978, a conservation programme for gray began in Wisconsin and people were no longer allowed to shoot them. The causes of death of wolves are disease, starvation and accidents such as collisions with vehicles.

Fig. 6.1 shows the size of the gray wolf population in Wisconsin between 1986 and 2010. It also shows the predicted wolf population if the conservation programme is successful.

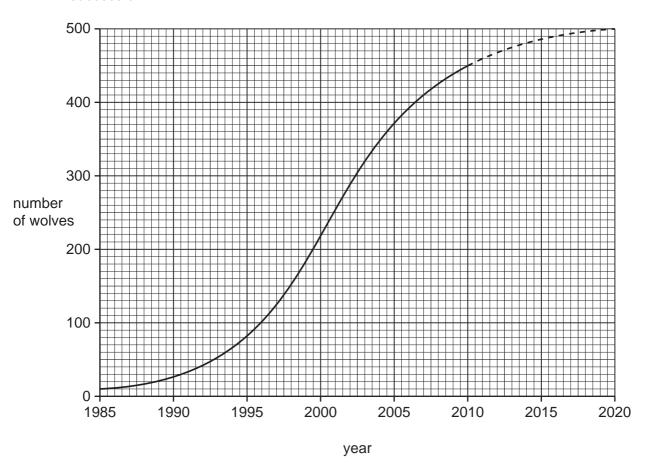


Fig. 6.1

(i) Suggest why the population of gray wolves in Wisconsin is not expected to increase beyond about 500 individuals, even if they are no longer killed by

	humans.
	[2]
(ii)	Some people in Wisconsin are opposed to the wolf conservation programme. Explain why it is important to conserve species such as the gray wolf.
	141

- Copper metal reacts with oxygen gas to form copper oxide. 7
 - (a) Table 7.1 shows information about two different types of copper oxide.

Table 7.1

l re	eacts with oxygen gas	20 s to form copper oxid	le. s of copper oxide.
1 s	shows information abo	out two different type:	s of copper oxide.
	name	colour	chemical formula
	copper(II) oxide	black	CuO
	copper(I) oxide	red	Cu ₂ O

(i)	Copper is a transition metal.
	State one property, shown in Table 7.1, which is typical of transition metals.
	[1]
(ii)	The formula of the oxide ion is O ²⁻ .
	Use the formula of copper(I) oxide to deduce the charge of the copper ion in this compound.
	Show your working.
	[2]

www.PapaCambridge.com (b) Fig. 7.1 shows apparatus and materials needed for the electrolysis of a solutions of ionic compounds, using graphite electrodes.

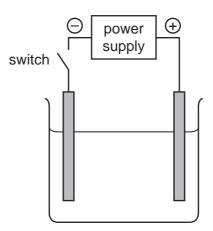


Fig. 7.1

Table 7.2 shows the observations made when solutions of three compounds, W, X and Y, were each electrolysed.

Table 7.2

compound in solution	observation at the cathode	observation at the anode		
w	bubbles of gas	bubbles of gas which bleach damp litmus paper		
x	orange / pink solid layer forms	bubbles of gas which bleach damp litmus paper		
Y	bubbles of gas	orange solution produced		

(i)	On Fig 7.1, clearly label the anode and the electrolyte .	[2]
(ii)	Suggest the name of compound X .	[1]
(iii)	Name the gas produced at the cathode when compound ${\bf W}$ is electrolysed.	
		[1]
(iv)	Explain which compound, W , X or Y , could be potassium bromide.	
	compound	
		[2]

				22		Q.
8	(a)	Explain	why plants need lig	ht for photosynthe	sis.	abaCan.
		••••••				[2]
	(b)		ent fixed a piece of the the plant in the sun		leaf, which was still attach	ned to the plant.
		He the		from the plant an	d tested it for starch, afte	er removing the
		(i) De	scribe how the stude	ent should test the	leaf for starch.	
						[4]
		(ii) Fig	. 8.1 shows the leaf	before and after he	e did the starch test.	
		blac pape	k			
				estina		
			perore te	ະວແກ່ຽ	aner testing	

Fig. 8.1

Complete the diagram of the leaf after testing in Fig. 8.1, using labels to show the colours of each part. Do **not** colour the diagram. [2]

(c)	In daylight, plant leaves take in carbon dioxide and give out oxygen. In darknes take in oxygen and give out carbon dioxide.
	Explain why this happens.
	[3]

For iner's **9** Fig. 9.1 shows a rock that is falling from the top of a cliff into the river below.

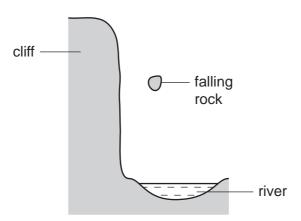
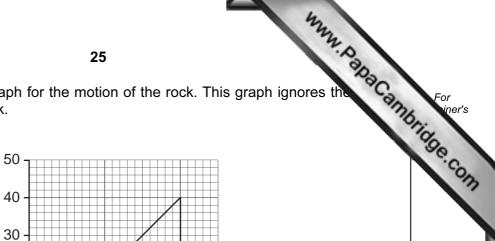


Fig. 9.1

(a) The rock accelerates downwards at $9.8 \, \text{m/s}^2$. The mass of the rock is $2000 \, \text{g}$.

Calculate the weight of the rock.

State the formula that you use and show your working.


formula used

working

[2]

www.PapaCambridge.com

(b) Fig. 9.2 is a speed-time graph for the motion of the rock. This graph ignores the of air resistance on the rock.

speed m/s

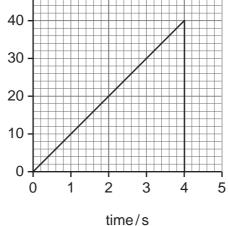


Fig. 9.2

(i) Calculate the kinetic energy of the rock as it hits the water.

State the formula that you use and show your working.

formula used

working

[3]

(ii) Calculate the height of the cliff.

Show your working.

[2]

		The state of the s	
		26 e rock has an irregular shape. It has a mass of 2000 g and a volume of 700 cm. Calculate the density of the rock. State the formula that you use and show your working. formula used	
(c)	The	e rock has an irregular shape. It has a mass of 2000 g and a volume of 700 cm.	For
	(i)	Calculate the density of the rock.	iner.
		State the formula that you use and show your working.	Se.C.
		formula used	
		working	
		WORKING	
		[2]	
	(ii)	Describe how you could find the volume of an irregularly shaped object such as a	
	(")	rock. You should state the apparatus you would use and the measurements you would need to make.	
		[2]	

(d)	The	rock contains radioactive substances emitting high levels of ionising radiation
	(i)	State how the radioactivity could be detected.
		[1]
	(ii)	Explain why it would be dangerous for a person to handle this rock without proper protection.

The Periodic Table of the Elements DATA SHEET

1	0	4 H elium	Neon Neon Argon	44 🎾 not	الا م و	L ob		75 . L
		2 T ½	0 0 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	84 Kr Krypton 36		Radon 86	-	Lutetium 71
	=		19 Fluorine 9 35.5 C1 C1 C1 C1 C1	80 Br Bromine	127 I lodine	At Astatine 85		Yb Ytterbium
	>		16 Oxygen 8 32 \$	79 Se Selenium 34	128 Te Tellurium	Po Polonium 84		169 Tm Thullum
	>	Nitrogen 7 31 P Phosphorus 15	75 AS Arsenic 33	122 Sb Antimony 51	209 Bi Bismuth		167 Er Erbium 68	
	\geq		Carbon 6 Carbon 8 Silicon 14	73 Ge Germanium	Sn Tin 50	207 Pb Lead		165 Ho Holmium 67
	=		11 B Boron 5 A1 Auminium 13	70 Ga Gallium 31	115 In Indium 49	204 T (Thallium		162 Dy Dysprosium 66
				65 Zn Zinc 30	112 Cd Cadmium 48	201 Hg Mercury 80		159 Tb Terbium 65
				64 Copper	108 Ag Silver 47	197 Au Gold		157 Gd Gadolinium 64
Group				59 Nickel	106 Pd Palladium 46	195 Pt Platinum 78		152 Eu Europium 63
้อั				59 Co Cobalt	103 Rh Rhodium 45	192 Ir Iridium		Sm Samarium 62
		1 X Hydrogen		56 Fe Iron	TO1 Ruthenium 44	190 OS Osmium 76		Pm Prometrium 61
				Mn Manganese 25	Tc Technetium 43	186 Re Rhenium 75		Neodymiun 60
				CC Chromium 24	96 Mo Molybdenum 42	184 W Tungsten 74		Pr Pr Praseodymium 59
				51 V Vanadium 23	Niobium 41	181 Ta Tanataum 73		140 Ce Cerium
				48 T tranium 22	2 Zroonium	178 # Hafnium		
				Scandium	89 ×	139 La Lanthanum s	227 Ac Actinium	l series eries
	=		Beeryllium 4 24 Mg Magnesium 12	40 Ca Calcium	Sr Strontium	137 Ba Barium 56	226 Ra Radium	*58-71 Lanthanoid series 190-103 Actinoid series
	_		Lithium 3 23 23 Na Sodium 11	39 K Potassium 19	Rubidium 37		Fr Francium 87	*58-71 L;

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).

www.papaCambridge.com

Mo

Fn

Es

ਲ

Currium

Am

å

Ра

232 **Th**

90

b = proton (atomic) number

a = relative atomic mass X = atomic symbol

Key

Plutonium Pu

Californium 98 ರ

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.