

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in. Write in dark blue or black pen.

You may use a soft pencil for any diagrams, graphs, tables or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all questions.

00 00

A copy of the Periodic Table is printed on page 24.

At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question.

For Exam	iner's Use
1	
2	
3	
4	
5	
6	
7	
8	
9	
Total	

This document consists of 23 printed pages and 1 blank page.

(h)	٨١٣	3	
(a)	DN.	IA.	For iner's
	(i)	Name one type of cell in the human body that does not contain a nucleus.	De.Co
		[1]	177
	(ii)	In humans, a sperm cell has 23 chromosomes.	
		Suggest the number of chromosomes that are present in one of the light-sensitive cells in the human eye.	
		[1]	
	(iii)	Outline the function of DNA.	
		[2]	

- 4
- www.papaCambridge.com 2 Diamonds, sapphires and rubies are found in the Earth's crust and are valua industrial materials and for making jewellery.

(a) Table 2.1 shows the numbers of protons, neutrons and electrons in three atoms, X, Y and Z.

Table 2.1	

atom	number of protons	number of neutrons	number of electrons
X	5	6	5
Y	6	7	6
Z	12	12	12

(i) Diamonds are made of the element carbon.

Explain which one of the atoms, **X**, **Y** or **Z**, shown in Table 2.1 is a carbon atom.

atom ,.... explanation [1] (ii) State the nucleon number (mass number) of atom X in Table 2.1. [1] (b) The main compound in sapphires and rubies is aluminium oxide.

Aluminium oxide is an ionic compound.

(i) Aluminium oxide has the chemical formula, Al_2O_3 .

Explain what this formula means.

..... [2]

www.papaCambridge.com 5 (ii) State one way in which an ion differs from an atom. (c) Fig. 2.1 shows a simplified diagram of a process which is used to obtain metallic aluminium. power supply (+)molten mixture containing aluminium oxide Fig. 2.1 (i) Name the process shown in Fig. 2.1, and state the meaning of the word anode. name of process meaning of anode [2] (ii) Explain why the mixture containing aluminium oxide in Fig. 2.1 must be kept molten. [2] (iii) Complete the simple word chemical equation below which describes the main reaction taking place in the process in Fig. 2.1. aluminium oxide ------[1]

	422
	7
(d)	The power output of the athlete is 600 W.
	Calculate the amount of work done by the athlete over 5 seconds.
	Show your working.
	J [2]
(e)	After the race the athlete is sweating. The sweat evaporates from the surface of the athlete's skin.
	Describe the process of evaporation in terms of particles.
	[2]

(b) Table 4.1 shows some information about enzymes found in the human alimentary canal.

Complete the table.

Table 4.1

enzyme	substrate	product
amylase		maltose
	proteins	amino acids
		fatty acids and glycerol

[4]

		433
		9
(c)	Nut live	rients such as amino acids and glucose are carried from the alimentary cana r. The liver converts any excess amino acids to a nitrogenous waste product.
	(i)	Name this waste product. [1]
	(ii)	Name the organs that excrete this waste product.
		[1]
	(iii)	The liver converts excess glucose in the blood into glycogen. The glycogen is then stored in cells in the liver. Glycogen is an insoluble substance.
		Using your knowledge of osmosis, suggest why liver cells might swell and burst if they stored large quantities of a soluble substance such as glucose.
		[2]
	(iv)	When body cells need glucose, liver cells convert some of their stored glycogen back into glucose. The cells then release the glucose into the blood.
		Explain why body cells need glucose.
		[2]

5	(a) Fig	10 5.1 shows a 230 V 60 W light bulb. 230 V 60 W tungsten filament unreactive gas filling bulb glass bulb	
		Fig. 5.1	
	(i)	Explain the meaning of	
		60 W on the bulb,	
		230 V on the bulb.	
	(ii)	[2] Describe the energy transformations which occur in the light bulb when it has been switched on.	
		[3]	
	(iii)	Suggest why the light bulb is filled with an unreactive gas.	
		[1]	

Fig. 5.2

(i) Describe what happens to the current after the bulb is switched on.

..... [2]

(ii) Use the graph to find the current through the light bulb 80 ms after it is switched on.

Α [1]

www.papacambridge.com (c) (i) A lamp with a resistance of 1000Ω , when lit, is connected in series with a lamp with a resistance of 2000Ω , when lit.

Calculate the combined resistance of these two lamps.

State the formula that you use and show your working.

formula

working

Ω [2]

(ii) The resistance of a piece of wire depends on a number of variables such as the length of the wire and the material from which it is made.

State two other factors which can affect the resistance of a piece of wire.

1	
2	

[2]

BLANK PAGE

Please turn over for Question 6.

6 (a) Table 6.1 shows some properties of three solid elements A, B and C.

Table	6.1
TUNIC	0.1

able 6.1 shows some	e properties of three Table (I4 solid elements A, E 5.1	and C .	Bhacann For iner's
element	density	electrical conductivity	melting point	CO.
Α	low	high	low	
В	low	low	high	
С	high	high	high	

(i) Suggest and explain which element, A, B or C, has properties that are typical of a non-metal.

	element
	explanation
	[1]
(ii)	Suggest and explain which element, A , B or C , has properties that are typical of a transition metal.
	element
	explanation
	[1]

(b) Components in electrical circuits are often joined by soldering them together.

Solder is an alloy which has a lower melting point than any of the pure metals contains.

Fig. 6.1 shows part of an electrical circuit into which a resistor has been soldered.

(c) Fig. 6.2 shows part of an electrical cell which a student is making in a school laboratory.

Fig. 6.2

Complete and label the diagram in Fig. 6.2 to show how the cell should appear when the student has finished. [3]

15

Fig. 6.3 shows a simplified diagram of a catalytic converter in a car.

Fig. 6.3

(i) Name two gaseous compounds that are produced when a hydrocarbon undergoes complete combustion.

1	
2	 [2]

(ii) Suggest one other gas in the exhaust gas mixture whose concentration is reduced by the catalytic converter.

> [1]

www.papaCambridge.com 17 7 (a) Fig. 7.1 shows two children playing in a swimming pool. В Α Fig. 7.1 Child A makes some small waves on the surface of the water. (i) In 10 seconds, 5 complete waves pass by child B who is standing in the same pool. Calculate the frequency of the waves. Show your working. Hz [1] (ii) Use suitable words to complete the sentences below to describe what waves do. A wave transfers energy without transferring . The energy is transferred in the direction that the wave _____. [2] (iii) Water waves are transverse waves. Name one example of a longitudinal wave. [1]

(c) The water in the swimming pool is heated by the Sun.

State the method of heat transfer by which heat from the Sun reaches the Earth.

[1]

www.papaCambridge.com The golden lion tamarin, Leontopithecus rosalia, is a monkey that lives in forests in 8 Its diet includes fruits and nectar from trees. Its predators include snakes, bamboo rats owls.

(a) (i) State the correct biological term for a two-word Latin name such as *Leontopithecus* rosalia.

......[1]

(ii) Suggest an advantage of giving each species of organism a Latin name like this.

..... [1]

(b) (i) In the space below, use the information provided to construct a food web that includes golden lion tamarins.

(ii) On your food web, draw a circle around **one** producer.

[1]

(c) Golden lion tamarins are important for the dispersal of seeds from many species of tree. They eat the fruits and then egest the seeds in their faeces.

www.papaCambridge.com An investigation was carried out into the distances that golden lion tamarins dispersed seeds from trees.

Fig. 8.1 shows the results of a study in which the distances of the tamarins' faeces from one tree were measured.

Fig. 8.1

(i) Describe the distribution of golden lion tamarin faeces in relation to this tree.

[2] (ii) Suggest two ways in which the dispersal of seeds away from the tree, in golden lion tamarin faeces, could benefit the young plants that grow from the seeds. 1 2 [2]

9 The manufacture of ammonia is an important industrial process.

www.papacambridge.com Fig. 9.1 is a simplified diagram of a reaction vessel which is used to make ammonia.

- (a) Ammonia is made by combining nitrogen and hydrogen.
 - (i) Explain one difference between an element and a compound. You may use these substances as examples.

..... [2] (ii) Describe a chemical test for ammonia gas. [2]

www.papaCambridge.com 23 (b) Ammonia is used to make the compound ammonium nitrate. When it is added ammonium nitrate is a useful source of nitrogen for plants. Some of the nitrogen in by plants is combined with other elements to make amino acids. (i) Explain briefly why nitrogen gas from the air cannot be used directly by most plants. [1] (ii) Suggest a compound that neutralises ammonia to produce ammonium nitrate. [1] (iii) Name the three other elements which are always combined with nitrogen in amino acids. [2] (iv) Describe briefly what happens to amino acid molecules when they form protein molecules. [2] (c) The reaction between nitrogen and hydrogen requires an iron catalyst. (i) State what is meant by the term *catalyst*. (ii) State one reason why the catalyst in the reaction in Fig. 9.1 could not be made of the alkali metal sodium. [1]

											2	24												2.	Papa
	0	2 Helium		20	Ne	Neon 10	40	År	Argon 18	84	Krypton 36	131	Хе	Xenon 54	ŭ	Radon 86				175	Lutetium 71		۲	Lawrencium 103	Cambrid
Group	١١			19 I	Ŀ	Fluorine 9	35.5	CI	Chlorine 17	80	Bromine 35	127	-	lodine 53	Δ+	Astatine 85				173 VL	Ytterbium 70	2	No	Nobelium 102	990
	>			12 14 16 16 16 16 16 16 16 16 16 16 16 16 16	0	Nitrogen Oxygen 8	32	S	Sulfur 16	79	Selenium 34	128	Те	Tellurium 52	Ğ	Polonium 84				169	Thulium 69	2	Md	Mendelevium 101	
	>				z		34	۔ ۳	Phosphorus 15	75	AS Arsenic 33	122	Sb	Antimony 51	209 Ai	Bismuth 83				167	Erbium 68	2	Fm	Fermium 100	
	≥				ပ	6 Garbon		Si Si	Silicon 14	73	Germanium 32	119	Sn s	Tin 50	207 Pb Lead			165 Holmium		5	Es	Einsteinium 99	(r.t.p.).		
	≡			7	m	Boron 5	27	ΑI	Aluminium 13	70	Ga Gallium 31	115	In	Indium 49	204 T 1	Thallium 81				162	Dysprosium 66		ç	Californium 98	pressure
										65	Zn ^{Zinc}	112	с С	Cadmium 48	201 H	Mercury 80				159	Terbium 65		BĶ	Berkelium 97	ature and
										64	Cu Copper 29	108	Ag	Silver 47	197 A	Gold 79				157	Gadolinium 64	-	Cm	Curium 96	n tempera
								59	Nickel Z8	106	Pd	Palladium 46	195 2	Platinum 78				152	Europium 63	2	Am	Americium 95	m³ at roor		
			_							59	Cobalt Cobalt	103	Rh	Rhodium 45	192 T	Iridium 77				150	Samarium 62	-	Pu	Plutonium 94	is is 24 dr
		L Hydrogen								56	Fe Iron 26	101	Ru	Ruthenium 44	190 C	Osmium 76				20	Promethium 61		Np	Neptunium 93	of any ga
										55	Mn Manganese 25	1	ц	Technetium 43	186 D	Rhenium 75				144	Neodymium 60	238	∍	Uranium 92	one mole
										52	Chromium 24	96	Мо	Molybdenum 42	184 V	Tungsten 74				141	Praseodymium 59	2	Ра	Protactinium 91	olume of
										51	Vanadium 23	93	qN	Niobium 41	181 Ta	Tantalum 73				140	Cerium 58	232	Ч	Thorium 90	The v
										48	Ttanium 22	91	Zr	Zirconium 40	178 Hf	Hafnium 72						nic mass	lodi	nic) number	
			,							45	Scandium 21	68	≻	Yttrium 39	139	Lanthanum 57 *	227	Ac	89 †	lseries	eries	= relative ator.	= atomic sym	= proton (aton	
	=			6	Be	Beryllium 4	24	Mg	Magnesium 12	40	Calcium 20	88	Sr	Strontium 38	137 Ra	Barium 56	226	Ra	Radium 88	anthanoid	Actinoid s	a a	× ×	- P	
	_			2		Lithium	23	Na	Sodium 1	39	Potassium 9	85	Rb	Rubidium 7	133 Ce	Caesium		Ŀ	rrancium 7	58-71 La	90-103 /		ey	٩	

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of