

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

White Co.

۲	
N	
•	
٧	
7	
J	
^	
_	
Л	
0	
۰	
)	
_	
_	

CANDIDATE NAME							
CENTRE NUMBER				CANDIDATE NUMBER	Ξ		

CO-ORDINATED SCIENCES

0654/33

Paper 3 (Extended)

October/November 2011

2 hours

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use a soft pencil for any diagrams, graphs, tables or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO **NOT** WRITE IN ANY BARCODES.

Answer all questions.

A copy of the Periodic Table is printed on page 28.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

For Exam	iner's Use
1	
2	
3	
4	
5	
6	
7	
8	
9	
Total	

This document consists of 27 printed pages and 1 blank page.

(a) Fig. 1.1 shows a flowering plant, and two cells from the plant. 1

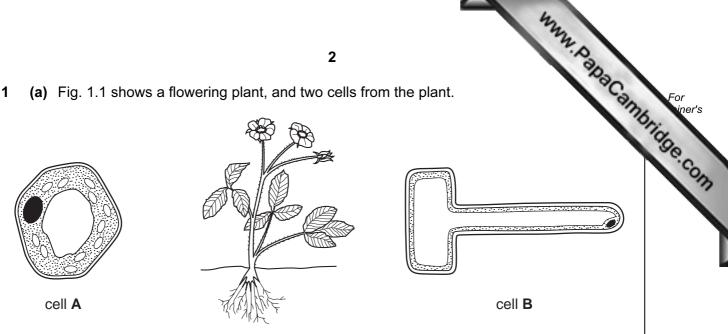


Fig. 1.1

(i)	On Fig. 1	l.1,	draw	а	line	from	each	cell	to	a	part	of	the	plant	in	which	it	could	be
	found.																		[2]

(ii) State one difference between the contents of cell A and cell B, and explain the

reasons for this difference.	
difference	
explanation	
	•••••

(b) A grower has a rare variety of orchid with unusual flowers. She decides to produce new plants from this orchid using tissue culture.

rather than sowing seeds she has collected from the orchid plant.
[3]

Explain why it is better for the grower to use tissue culture to produce new plants,

		3 WWW. Pap	
(c)	Thi	netic engineering has been used to produce a new variety of maize (corn) s was done by introducing a gene into the maize cells that causes the pland duce a toxin. The toxin only kills insects that eat parts of the plant.	For iner's
	(i)	Suggest one possible advantage to a farmer of growing this type of maize.	SE.COM
	410		
	(ii)	Suggest one possible problem that could be caused by growing this type of maize.	
		[1]	

- Melamine resin and PTFE are important plastics which have many uses in the hold 2 industry. Wool consists of fibres which are made of protein molecules.
 - (a) All of the above substances are made of polymer molecules.

4 www.Par	
amine resin and PTFE are important plastics which have many uses in the holistry. Wool consists of fibres which are made of protein molecules.	For viner's
All of the above substances are made of polymer molecules.	Tage
Explain the general meaning of the term <i>polymer</i> .	COM
	[2]

(b) Fig. 2.1 shows the displayed formula of the monomer that reacts to produce PTFE.

Fig. 2.1

(i) Fig. 2.2 shows the outer shell electrons in a carbon atom and a fluorine atom.

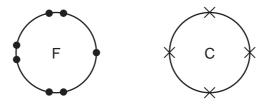
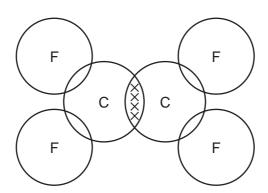



Fig. 2.2

Complete the bonding diagram below to show how the outer electrons are arranged in the molecule whose displayed formula is shown in Fig. 2.1.

		the state of the s	For iner's [1]
		5	
	(ii)	Explain why the molecule shown in Fig. 2.1 is not an example of a hydrocan.	C. For
	(,	pantany are measure and managed and are managed and my are com-	iner's
			141 196
			COM
	(iii)	Draw the displayed formula of a small section of a PTFE molecule.	
		The section that you draw must show eight fluorine atoms.	1
			[3]
(-)	N 4 - 1	lander was in and DTEE habour differently when they are harded DTEE harden	
(C)		lamine resin and PTFE behave differently when they are heated. PTFE becom- ter and may melt, but melamine resin does not melt even when it is heated strongly	
		plain this difference in terms of forces between molecules. You may draw son	ne
	sim	ple diagrams if it helps you to answer this question.	
			[3]

(d) Fig. 2.3 shows a magnified section of a wool fibre. The fibre has been washed hot, temporarily hard water. The fibre is covered with tiny crystals of limescale.

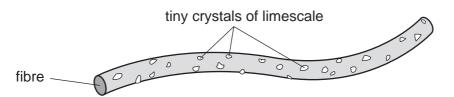
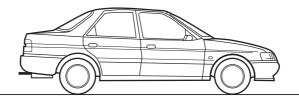


Fig. 2.3

(i) Complete the symbolic equation which represents the chemical reaction which causes limescale to form.

$$Ca(HCO_3)_2 \longrightarrow$$


[1]

[3]

(ii) Ion exchange resins are polymers with positive ions attached to the polymer chains.

Describe and explain briefly how the process of ion exchange can be used to soften hard water.

A car is being driven on a journey.

*	
7	
A car is being driven on a journey.	For
	For iner's
(a) (i) State the two quantities needed to find the momentum of the car.	
and	[1]
(ii) The car turns a corner without changing speed.	
Explain why the momentum of the car has changed.	
	[2]

(b) Fig 3.1 shows a speed-time graph for part of the car's journey, during which the are used.

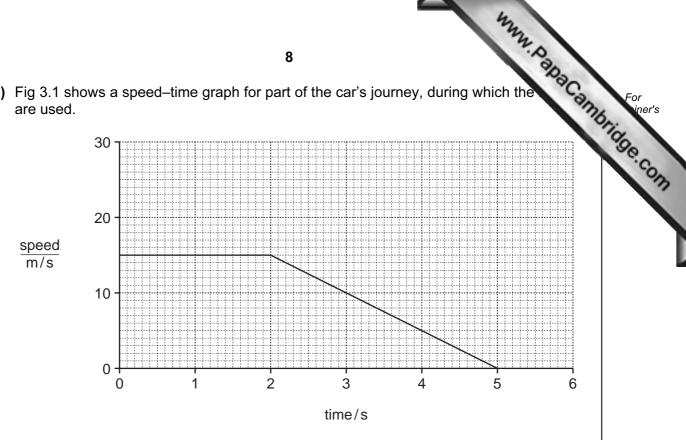


Fig. 3.1

- (i) Mark with an **X** the point on the graph at which the brakes are applied. [1]
- (ii) Calculate the deceleration of the car. Show your working.

[2]

(iii) Calculate the distance travelled by the car during deceleration. Show your working.

[2]

www.PapaCambridge.com (c) Fig 3.2 shows the circuit diagram of the parallel circuit used to supply electrical to two identical headlamps in the car.

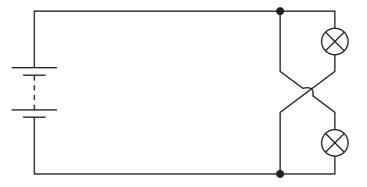


Fig 3.2

The current through the filament of one headlamp is 2.4 A. The potential difference across each of the headlamps is 12 V.

(i) Calculate the resistance of the headlamp filament whilst in use.

State the formula that you use and show your working.

formula used

working

[2]

(ii) Calculate the total resistance of the two headlamps in parallel.

State the formula that you use and show your working.

formula used

working

[3]

4	(a)	(i)	Caffeine is a compound contained in coffee. Many people who consume during the day find that they have difficulty in getting to sleep at night.	Can
			Explain why it is correct to refer to caffeine as a drug.	
				[1]
		(ii)	Some drugs are analgesics.	
			Why might a person need to take an analgesic?	
				[1]

(b) Some coffee drinks are sold in self-heating cans.

Fig. 4.1 shows a cross-sectional diagram of one design of self-heating can.

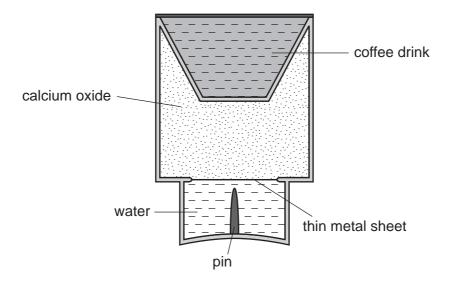
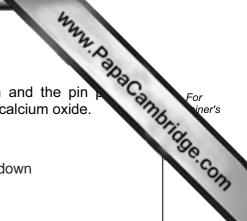



Fig. 4.1

Fig. 4.2 shows the can after it has been turned upside down and the pin through the thin metal sheet. This allows the water to fall into the calcium oxide.

[3]

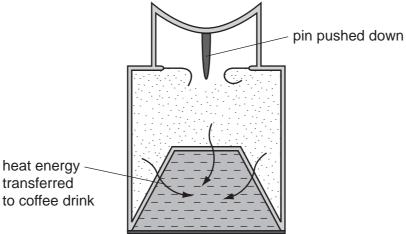


Fig. 4.2

The reaction between calcium oxide and water is highly exothermic and produces the ionic compound calcium hydroxide, Ca(OH)₂.

(i)	In an internet video to explain how the can works, it is stated that the water mixes with 'limestone'.
	State why this information is incorrect .
	[1]
(ii)	Use the position of calcium in the Periodic Table to explain why the electrical charge of a calcium ion is +2.

	(iii)	Deduce the electrical charge of the hydroxide ion.
		Show how you obtained your answer.
		[2]
(0)	The	a belonged equation for the reaction between coloium evide and water is aboun
(6)	bel	e balanced equation for the reaction between calcium oxide and water is shown ow.
		CaO + H_2O \longrightarrow Ca(OH) ₂
	Thi	s shows that one mole of calcium oxide reacts with one mole of water.
	(i)	A self-heating can is designed to contain 224 g of calcium oxide.
		Calculate the number of moles of calcium oxide in 224g of the compound.
		Show your working.
		[2]

(ii)	Calculate the mass of water which is needed to react with 224 g of calcium of the show your working.					
	Show your working.	78	ridge			
		[2]				

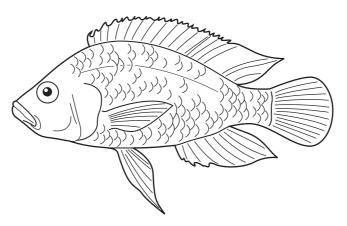
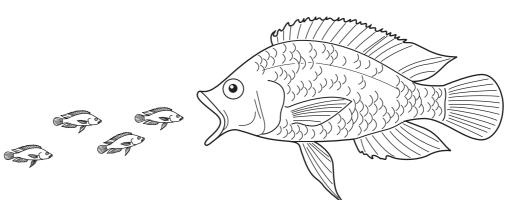



Fig. 5.1

(a)	Sta	te two features, visible on Fig. 5.1, which are characteristic of fish.	
(4)		to the location, violate on rig. o. 1, which are sharedened of hori.	
	1		•••••
	2		[1]
(b)	Mos	st fish have external fertilisation.	
	(i)	Explain what is meant by external fertilisation.	
			[2]
	(ii)	Explain why animals that live entirely on land cannot use external fertilisation.	
			[1]

For iner's

www.PapaCambridge.com (c) Wild cichlid fish are unusual because they care for their eggs and young. The keeps the fertilised eggs in her mouth until they hatch. After the young fish hatched, she takes them back into her mouth when danger threatens. This behaviour caused by the fish's genes, and is inherited.

Suggest how natural selection in an east African lake could have led to the evolution this behaviour.	n of
	•••••
	[3]

www.PapaCambridge.com (d) Cichlid fish that have been bred in captivity can be bought as pets. Breeders to young away from the captive mothers after they have hatched because these moth often eat their young.

Research was carried out into the behaviour of mothers in two groups of cichlid fish.

- Group A had been bred from a population of fish that had been kept in captivity for more than 30 years.
- Group **B** had recently been caught in the wild.

The researchers used 4 female fish from each group. They allowed each fish to breed as normal with male fish from the same group. They left the young fish with their mothers. All the fish were kept in the same conditions.

Table 5.1 shows the results.

Table 5.1

	group A	group B
number of mothers	4	4
number of mothers that ate their young by 1 day after hatching	3	0

	(i)	Explain h group A environme	and						

(ii) The researchers also measured the testosterone levels in the mother fish groups.

Fig. 5.2 shows the results.

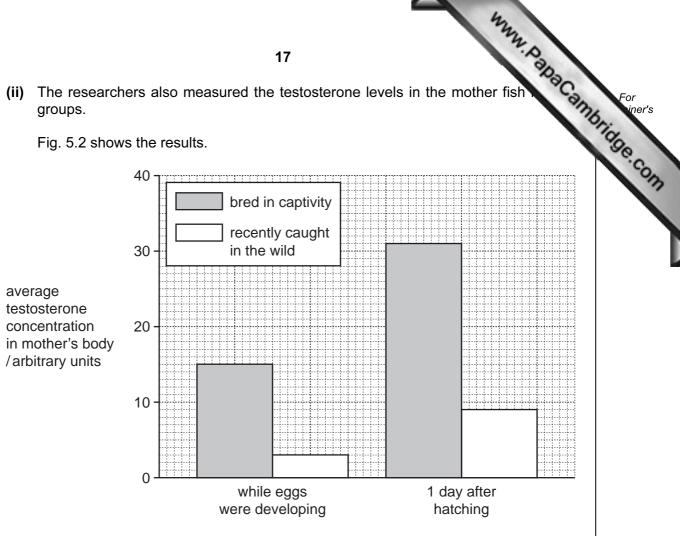
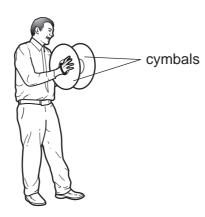



Fig. 5.2

	Describe the differences in testosterone concentrations in the two groups of mother fish.
	[0]
	[2]
(iii)	These results do ${f not}$ prove that high testosterone levels in population ${f A}$ caused the mothers to eat their young.
	Outline two reasons why this statement is correct.
	1
	2
	[2]

[2]

- **6** An orchestra is playing in a theatre.
 - (a) A musician is playing the cymbals.

	(i)	Describe how the sound travels through the air from the cymbals to the ear of a man in the audience.
		[0]
		[2]
	(ii)	The man in the audience thought that the sound from the cymbals was loud because of its high frequency. He was wrong.
		Explain why the man was wrong.
		[2]
(b)		e theatre has an internal volume of 50 000 m^3 . The air inside it has a density of $\mathrm{kg/m}^3$.
	(i)	Show that the mass of the air in the theatre is 65 000 kg.
		State the formula that you use and show your working.
		formula used
		working

		the the tenth of t	
		The air is heated by 10 °C. The specific heat capacity of air is 1000 J/kg °C. Calculate the energy needed to heat up the air in the theatre. State the formula that you use and show your working. formula used	1
	(ii)	The air is heated by 10 °C. The specific heat capacity of air is 1000 J/kg °C.	20.00
		Calculate the energy needed to heat up the air in the theatre.	1
		State the formula that you use and show your working.	
		formula used	
		working	
		working	
		[[3]
(c)	Col (30	oured light is shone onto the stage. Red light has a wave speed of 3 x 10^8 m / 0000000 m/s) and a wavelength of 7.5 x 10^{-7} m (0.000 000 75 m).	s
	(i)	Explain what is meant by the term wavelength.	
			•••
			[1]
	(ii)	Calculate the frequency of red light.	
		State the formula that you use and show your working.	
		formula used	
		working	
			[3]

7 (a) Table 7.1 shows the electron arrangements of atoms of five elements, ${\bf P}$ to ${\bf T}$.

Table 7.1

atom	1 st shell	2 nd shell	3 rd shell	4 th shell
Р	2	1		
Q	2	8	1	
R	2	8	2	
S	2	8	8	1
Т	2	8	8	2

(i)	Explain how the electron arrangements show that all of the elements, P to T , a metals.	are
		[1]
(ii)	An atom of element P has a nucleon (mass) number of 7.	
	State the number of neutrons in this atom.	
		[1]

to T. For iner's

www.PapaCambridge.com (b) Fig. 7.1 shows an electrochemical cell which was made by a student in a laboratory.

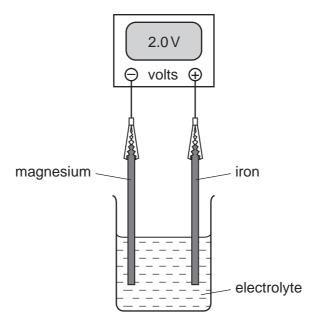


Fig. 7.1

(i) The student was asked to choose one of the liquids shown below as the electrolyte in her cell.

dilute sulfuric acid	hexane	sodium chloride solution				
She correctly chose sodium	chloride solution.					
Explain briefly why the other two liquids would not have been suitable.						
		[2]				

(ii) The student used her cell to investigate the relative reactivity of four magnesium, iron and two unknown metals, X and Y.

www.PapaCambridge.com The student had learned that the more reactive metal always becomes the negative electrode.

The results of experiments involving all four metals are shown in Table 7.2.

Table 7.2

experiment	negative electrode	positive electrode	cell voltage / volts
1	magnesium	iron	2.0
2	magnesium	x	2.7
3	magnesium	Y	1.6

Use the results	in Table 7.2 to place the four metals in order of reactivity.	
most reactive		
east reactive		[2]

Ral ambridge com

Please turn over for Question 8.

www.PapaCambridge.com (a) Fig. 8.1 shows a section through a part of a person's lungs where gas exchange 8 place.

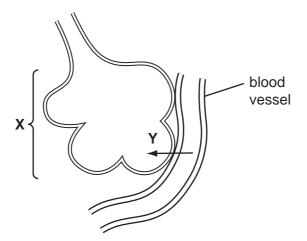


Fig. 8.1

	(i)	Name the structure labelled X .		[1]
	(ii)	Name the type of blood vessel that is shown in Fig. 8.1.		[1]
	(iii)	State what is shown by arrow Y, and explain why this pro	ocess takes place.	
				••••
				[3]
(b)		scribe how blood travels from the heart to the lungs. Your role of the heart in this process.	description should inclu	ide
				[3]

(c)	Describe and explain how the actions of the intercostal muscles and diap muscles cause inhalation (breathing in) to take place.	For iner's
		Se.Co.
		1
	[3]	

9 (a) The bar chart in Fig 9.1 shows the electrical power rating of two kettles.

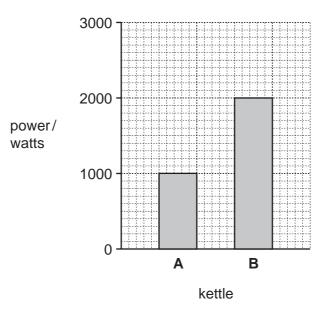


Fig. 9.1

Kettle A takes 10 minutes to boil some water.

Predict how long kettle **B** will take to boil the same mass of water.

[1]

www.PapaCambridge.com

(b) Kettle A has a label underneath it. Fig. 9.2 shows some of the information on this label.

voltage 250 V power 1000 W

Fig. 9.2

(i) Calculate the maximum current through the kettle.

State the formula that you use and show your working.

formula used

working

	(ii) This current passes through the kettle for 2 minutes.	6
	Calculate the charge which passes through the kettle in this time.	
	State the formula that you use and show your working.	•
	formula used	
	working	
		[2]
(c)	Use the idea of convection to explain why a kettle has the heating element at the bottom.	ıe
	[2]

For iner's

The Periodic Table of the Elements DATA SHEET

	0	4 He lium	20 Neon	40 Ar Argon		131 Xe Xenon	Radon 86		175
	II/		19 Fluorine	35.5 C1 Chlorine	80 Br Bromine	127 I lodine 53	At Astatine 85		173
	IN		16 Oxygen 8		79 Se Selenium 34	Te Tellurium 52	Po Polonium 84		169 F
	>		14 Nitrogen	31 Phosphorus	75 AS Arsenic 33	122 Sb Antimony 51	209 Bi Bismuth		167
	<u> </u>		12 Carbon 6	28 Si licon	73 Ge Germanium 2	20 Tin 50	207 Pb Lead		165
	=		11 Boron 5	27 A 1 Aluminium	70 Ga Gallium 31	Information 115	204 T t Thallium		162
					65 Zn Zinc 30	Cadmium 48	201 Hg Mercury 80		159 F
					8	108 Ag Silver 47	197 Au Gold		157
Group					59 Nickel	106 Pd Palladium 46	195 Pt Platinum 78		152
Gr			1		59 Co 27	Rhodium 45	192 I r Iridium 77		150
		T Hydrogen			56 Fe	Ru Ruthenium 44	190 OS Osmium 76		5
					Manganese 25	Tc Technetium 43	186 Re Rhenium 75		44 3
					Chromium 24	96 Mo Molybdenum 42	184 W Tungsten 74		14 Ç
					51 V Vanadium 23	Nobium 41	181 Ta Tantalum		140
					48 T Titanium 22	2 Zirconium	178 Hf Hafhium 72		1
					Scandium 21	89 ×	139 La Lanthanum 57 *	227 Ac Actinium	series
	=		Be Beryllium	24 Mg Magnesium	40 Ca Calcium	Strontium	137 Ba Barium 56	226 Ra Radium 88	*58-71 Lanthanoid series
	_		7 L.i. Lithium	23 Na Sodium	39 K Potassium 19	Rubidium	133 Cs Caesium 55	Fr Francium 87	*58-71 La

	33 Actin	58-71 Lanthanoid series 190-103 Actinoid series	Cerium	Pr Pr seodymium	Neodymium	Pm Promethium	Samarium	152 Eu Europium	157 Gd Gadolinium	159 7 Terbium	162 Dy Dysprosium	165 Ho Holmium	167 Er Erbium	169 Tm Thulium	Yb Ytterbium	175 Lu Lutetium	
	Ø	a = relative atomic mass	58	29	60 238	61	62	63	64	65	99	29	89	69	02	7.1	
Key	×	X = atomic symbol	Ļ	Ра	-	N D	Pu	Am	Cm	Æ	ັວ	Es	Fm	Md	S	ڐ	4
	Ф	b = proton (atomic) number	Thorium 90	Protactinium 91	Uranium 92	Neptunium 93	Plutonium 94	Americium 95	Curium 96	Berkelium 97	Californium 98	Einsteinium 99	Fermium 100	Mendelevium 101	Nobelium 102	Lawrencium 103	n.
			The v	The volume of one mole of any	ne mole	of any ga	s is 24 dn	\prime gas is 24 dm 3 at room temperature and pressure (r.t.p.).	n tempera	ature and	pressure	; (r.t.p.).				1	Dan
												•			•	20	2
															1	mb	mb
															30	Tic.	
															0.00	/	
															1		

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.