

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use a soft pencil for any diagrams, graphs, tables or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer **all** questions. A copy of the Periodic Table is printed on page 28.

At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question.

For Exam	iner's Use
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
Total	

This document consists of 26 printed pages and 2 blank pages.

1 (a) Most atoms of metallic elements found in the Earth's crust exist in compounds ores which are contained in rocks.

www.papaCambridge.com The chemical formulae of some metal compounds found in ores, together with the names of the ores, are shown below.

argentite	Ag ₂ S
chromite	$FeCr_2O_4$
galena	PbS
scheelite	CaWO ₄

(i) A binary compound is one that contains only two different elements.

State which of the compounds in the list above are binary compounds.

[1]

- (ii) State the ore from which the metallic element tungsten could be extracted.
 -[1]
- (b) Fig. 1.1 shows a diagram of an atom of the element lithium. This atom has a nucleon number (mass number) of seven.

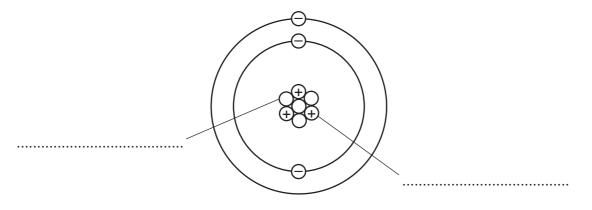
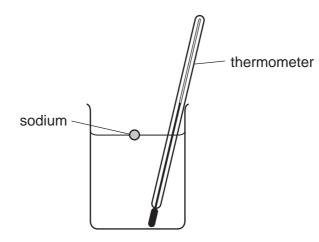
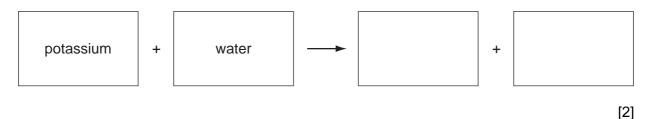



Fig. 1.1

Complete Fig. 1.1 by labelling the particles that exist in the nucleus.

[2]

www.papaCambridge.com (c) (i) A teacher dropped a small piece of sodium into a beaker containing cold way a thermometer. She stirred the mixture until all of the sodium had reacted.

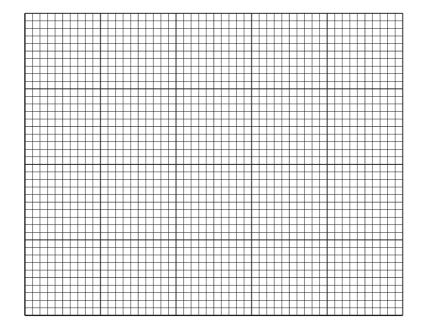

Predict two observations that could be made as the sodium reacts with the water.

1 _____ 2

- [2]
- (ii) Potassium is another element in the same group of the Periodic Table as sodium.

State one way in which the reaction of potassium with cold water would be different from that of sodium.

-[1]
- (iii) Complete the word chemical equation for the reaction between potassium and water.


2 An athlete warms up by running along a race track.

www.papacambridge.com He accelerates from rest and after 10 seconds reaches a maximum speed of 7 m/s.

He continues at this speed for another 10 seconds.

During the next 5 seconds, he steadily slows down and stops.

(a) Draw a speed-time graph to show the motion of the athlete.

(b) He then competes in a 200 m race. He completes the race in 25 seconds.

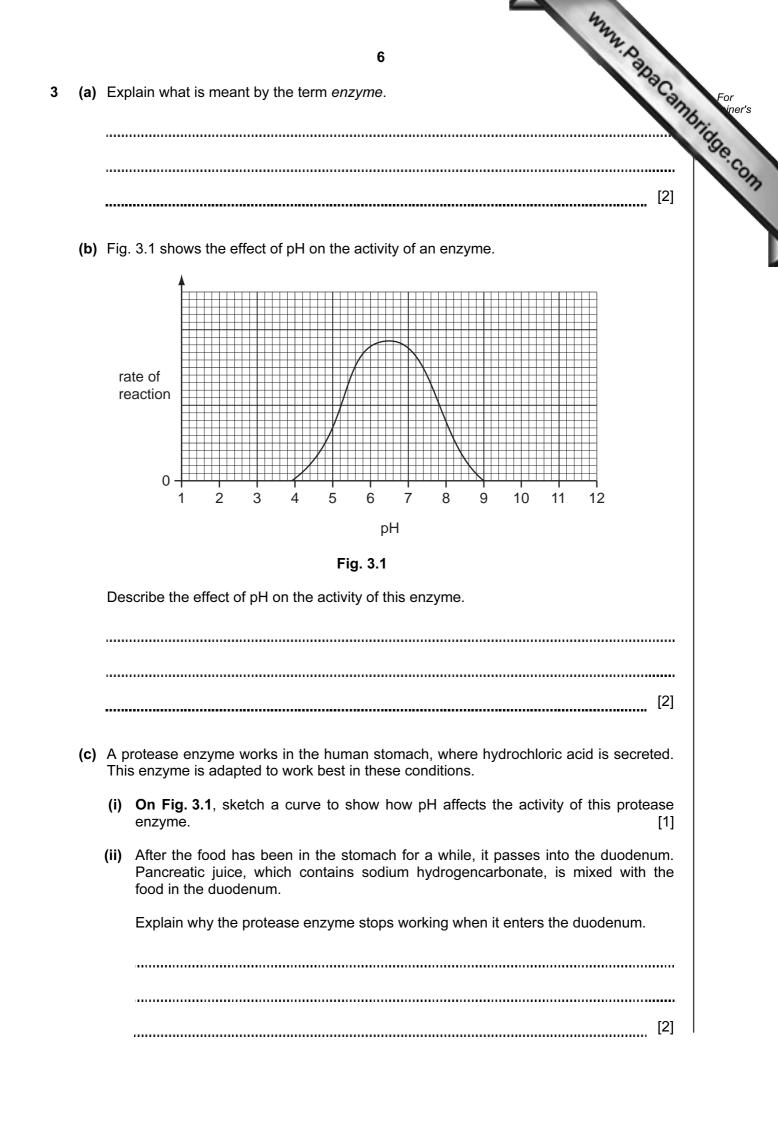
Calculate his average speed.

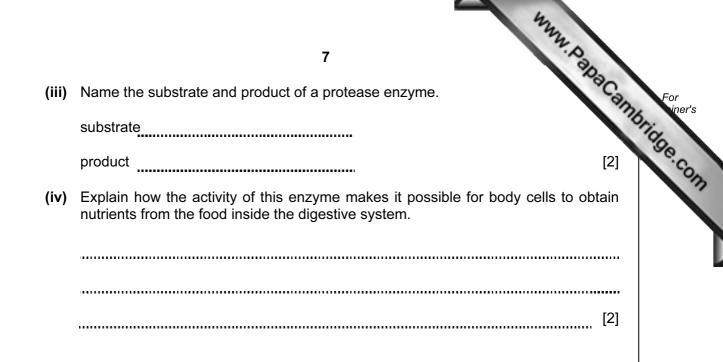
State the formula that you use and show your working.

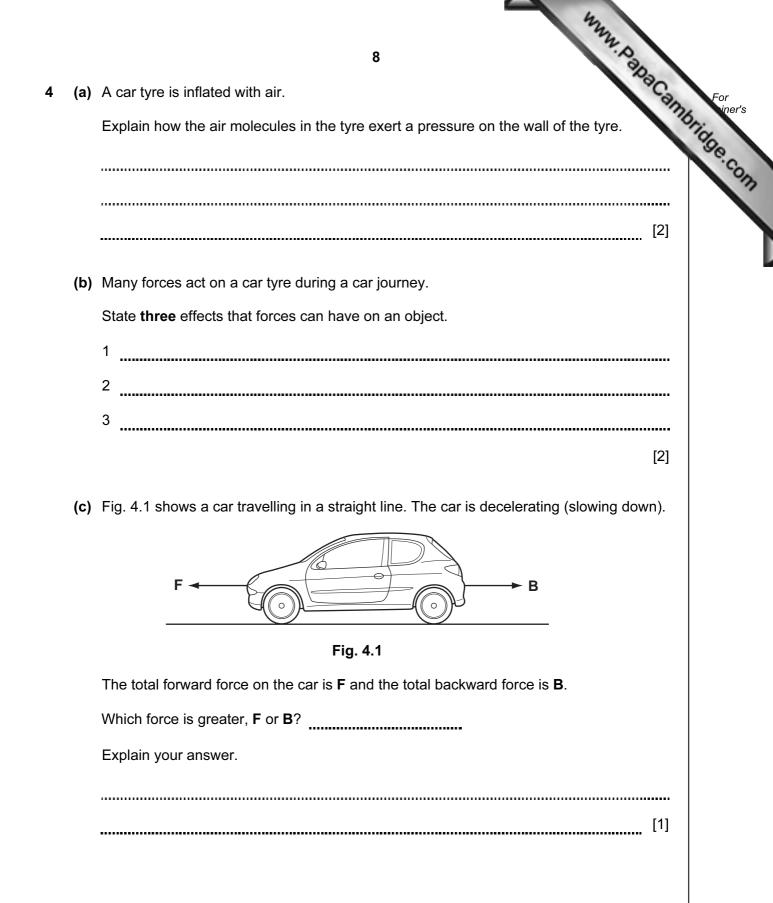
formula used

working

_____m/s [2]


[4]


4


- (c) During a race the athlete cools down by sweating.
 - (i) Describe and explain, in terms of the movement of water molecules, how evaporation cools down the athlete.

www.papacambridge.com[3] (ii) State two factors which would increase the rate of evaporation.

and [1]

	9)	xplain the energy cr wer the car. chemical sound	22
-	ords below, complete a car when petrol (gaso		xplain the energy converted wer the car.	Camil
boiled	burned	cooled	chemical	
heat	kinetic	nuclear	sound	
Petrol (gasoline) con	tains		energy. The petrol is	
Fellor (gasoline) con			energy. The petrons	
	in the engine to	produce heat energ	gy. The heat energy	
is changed into		energy which	moves the car. This	
process is not very e	fficient and much ener	rgy is wasted as		
energy and	en	ergy.		[5]

(e) Car brake lights (stop lights) light up when the driver presses on the footbrake pedal. The pedal acts as a switch.

Draw a circuit diagram including a battery to show how this works.

Design your circuit so that if one brake light fails, the other still lights up.

[4]

Table 5.1 shows information about some hydrocarbons.

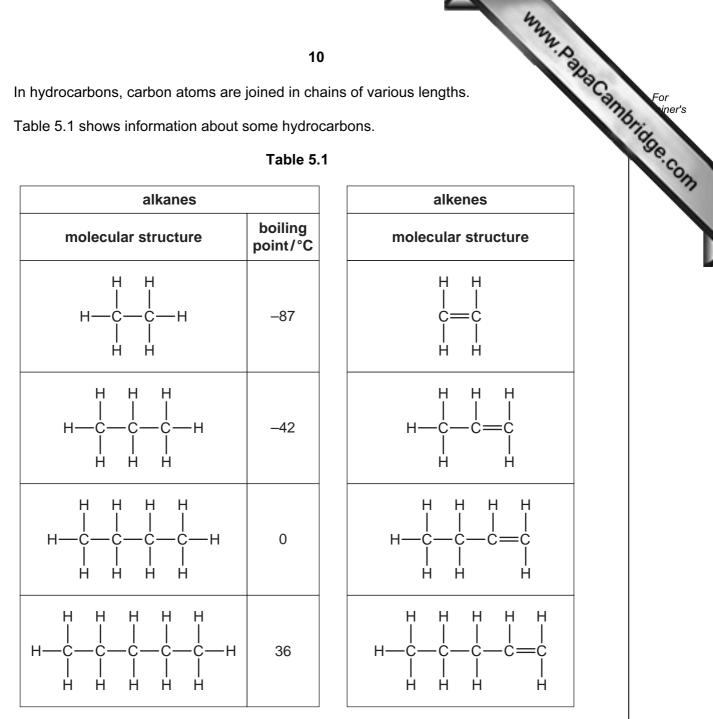
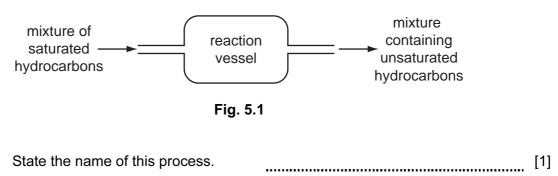
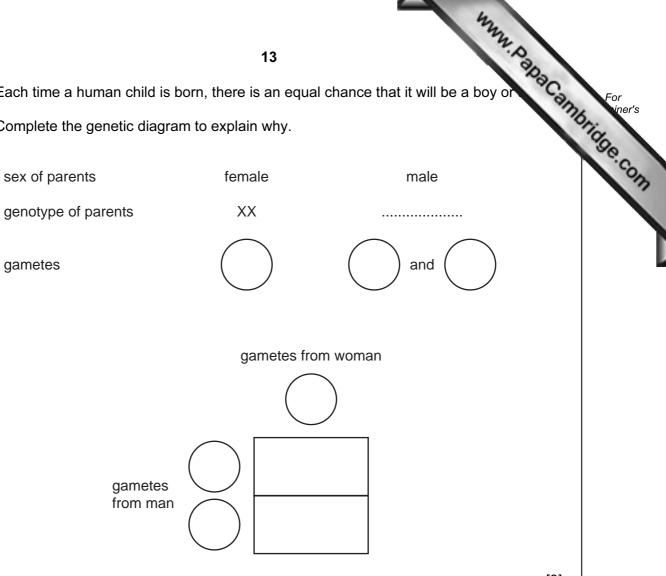



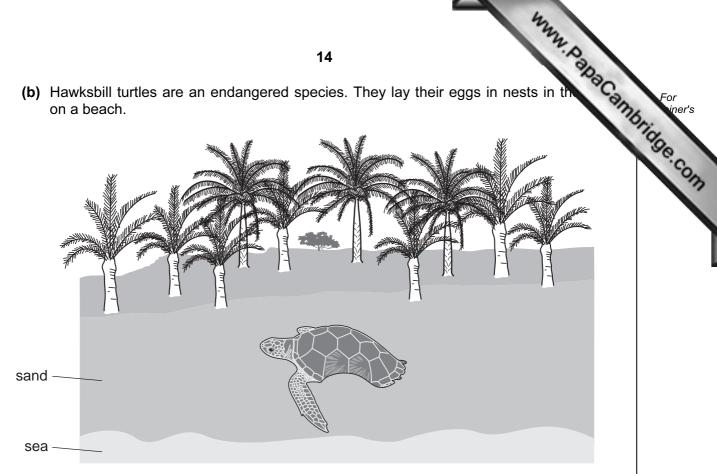
Table 5.1

(a) Table 5.1 contains examples of both saturated and unsaturated hydrocarbons.

(i) Fig. 5.1 shows a simplified diagram of the industrial process used to produce unsaturated hydrocarbons.



		32
		11 The reaction in (i) requires a catalyst. State the meaning of the term catalyst.
	(ii)	The reaction in (i) requires a catalyst.
		State the meaning of the term catalyst.
		[2]
(iii)	Describe a chemical test that is used to show whether a hydrocarbon is saturated or unsaturated.
		[2]
• •		alkanes in Table 5.1 occur naturally in deposits of petroleum (crude oil) and natural
	gas	clours is concreted into simpley mintures by fractional distillation at an ail refinance
		oleum is separated into simpler mixtures by fractional distillation at an oil refinery.
	(i)	Fractional distillation relies on differences in the boiling points of hydrocarbons.
		Describe the trend in boiling point shown by the alkanes in Table 5.1.
		[1]
	(ii)	
		Refinery gas is a useful fraction obtained from petroleum.
		Refinery gas is a useful fraction obtained from petroleum. State one use for refinery gas.
(iii)	State one use for refinery gas.
(iii)	State one use for refinery gas. [1]
(iii)	State one use for refinery gas. [1] Gasoline is a mixture of hydrocarbons that is used as car fuel. When gasoline is burned in car engines one of the waste gases (exhaust gases) is
(iii)	State one use for refinery gas. [1] Gasoline is a mixture of hydrocarbons that is used as car fuel. When gasoline is burned in car engines one of the waste gases (exhaust gases) is carbon monoxide. Describe briefly how carbon monoxide is formed in a car engine and explain why
(iii)	State one use for refinery gas. [1] Gasoline is a mixture of hydrocarbons that is used as car fuel. When gasoline is burned in car engines one of the waste gases (exhaust gases) is carbon monoxide. Describe briefly how carbon monoxide is formed in a car engine and explain why


BLANK PAGE

6 (a) Each time a human child is born, there is an equal chance that it will be a boy or Complete the genetic diagram to explain why.

[3]

(b) Hawksbill turtles are an endangered species. They lay their eggs in nests in the on a beach.

The sex of hawksbill turtles is determined by the temperature of the sand in which the eggs develop.

- At 29 °C, equal numbers of males and females develop.
- Higher temperatures produce more females.
- Lower temperatures produce more males.
- (i) Researchers measured the temperature, at a depth of 30 cm, in two different parts of a beach, on Antigua, where hawksbill turtles lay their eggs. The results are shown in Fig. 6.1. The tops of the bars represent the mean temperature.

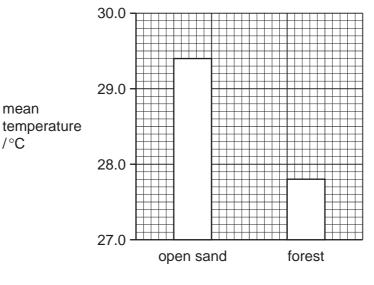
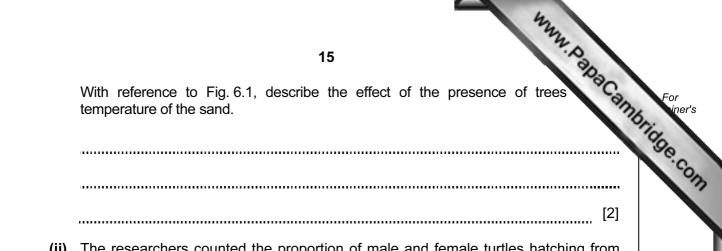



Fig. 6.1

(ii) The researchers counted the proportion of male and female turtles hatching from nests in the two different parts of the beach. The results are shown in Table 6.1.

Table 6	5.1
---------	-----

part of beach	nests producing more males than females	nests producing more females than males	nests producing equal numbers of females and males
open sand	0	16	0
in forest	36	0	0

Use the information in Fig. 6.1 to explain the results for nests in open sand and in forest, shown in Table 6.1.

..... [2] (iii) Suggest why hawksbill turtles might become extinct if all the forest by the beaches is cut down. [2] (c) State two harmful effects to the environment, other than extinction of species, that can result from deforestation. 1 2 [2]

	16 M. D
a)	16 The three types of nuclear radiation are alpha, beta and gamma. They can be ide by their different penetrating powers. Alpha radiation cannot penetrate paper. Explain how you could identify beta and gamma radiations by their penetrating powers. beta radiation
	Explain how you could identify beta and gamma radiations by their penetrating powers.
	beta radiation
	gamma radiation
	[2]
b)	Gamma radiation is an electromagnetic wave with a short wavelength.
	Explain the meaning of the term <i>wavelength</i> . You may draw a diagram if it helps your answer.
	[2]
(c)	Radon is a gas that emits alpha radiation.
	Explain why alpha radiation is dangerous to human beings.
	Explain why alpha radiation is dangelous to human beings.
	[2]
	[2]
	[2]
	[2]
	[2]

		17 ter supplies are often impure and have to be purified to make them safe for hunk. State one process that is used to make water safe for humans to drink. Explain, for the process you have chosen, how this process helps to purify the water.
8	Wa drin	ter supplies are often impure and have to be purified to make them safe for hunk.
	(a)	State one process that is used to make water safe for humans to drink.
		Explain, for the process you have chosen, how this process helps to purify the water.
		process
		how it purifies
		[2]
	(b)	Water is a compound which contains the elements hydrogen and oxygen.
		Describe one difference, other than physical state, between the compound water and a mixture of the elements hydrogen and oxygen.
		[2]

)	Table 8.1 shows info with water.	18 rmation about water a		that can form m
		Table 8.	1	
	compound	melting point/°C	boiling point/°C	solubility in water
	water	0	100	_
	sodium chloride	801	1413	soluble
	hexane	-95	69	insoluble

(i) Describe briefly how a sample of sodium chloride could be obtained from a solution of sodium chloride.

.....

(ii) Use the information in Table 8.1 to predict and explain whether or not a mixture of hexane and water could be separated at room temperature (20 °C) by the method of filtration.

..... [2]

(d) A student was given some small pieces of two solid elements. One of these ele was a metal and the other was a non-metal.

www.papaCambridge.com The student burned the samples in air, using the apparatus shown in Fig. 8.1. The oxide of each element was produced.

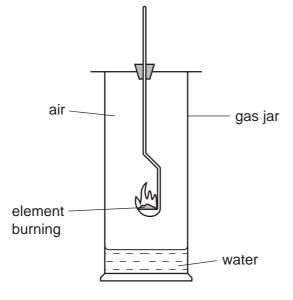
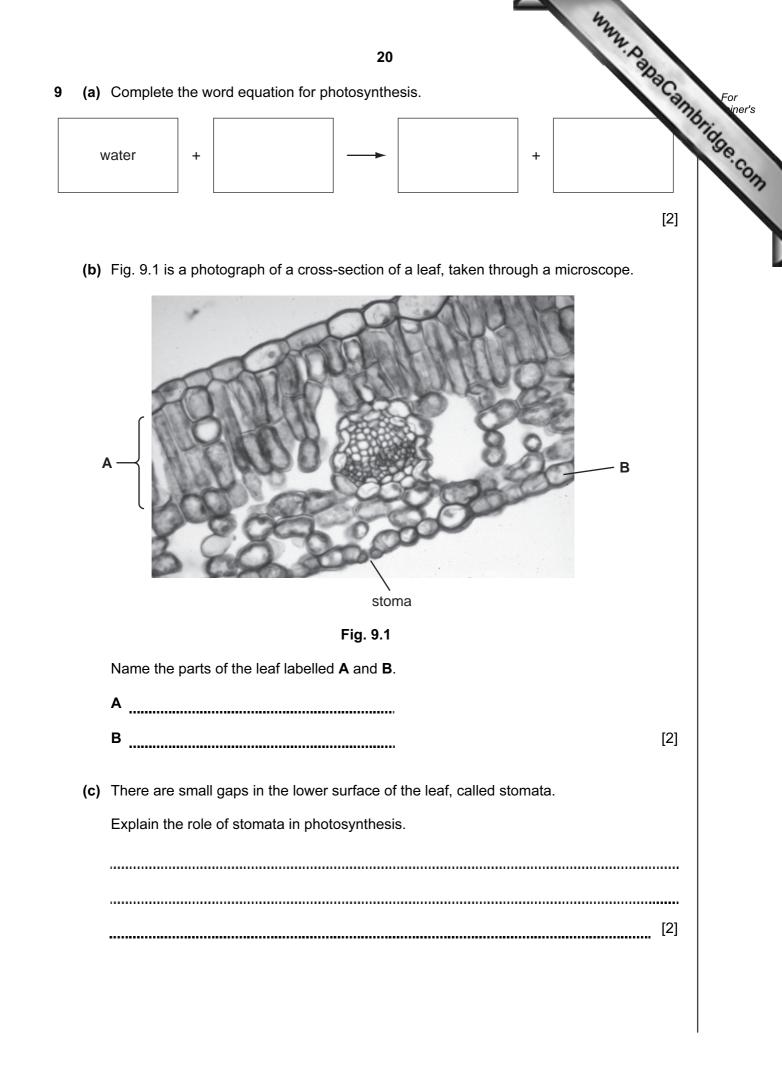



Fig. 8.1

(i) One of the oxides was a solid at room temperature and the other was a gas.

State and explain, in terms of the type of chemical bonding involved, which oxide was a solid.

	type of element whose oxide was solid
	explanation
	[2]
(ii)	The student also found that both of the oxides dissolved and reacted with the water in the bottom of the gas jar.
	State and explain the colour of full range indicator (Universal Indicator) when a few drops are added to the solution formed by the oxide of the metal.
	colour
	explanation
	[2]

	12
	21
d)	Stomata allow water vapour to diffuse out of the leaf.
	State the correct term for the loss of water vapour from a leaf.
	21 Stomata allow water vapour to diffuse out of the leaf. State the correct term for the loss of water vapour from a leaf. [1]
	Plants that live in hot, dry deserts often have fewer stomata than plants that live in places where there is plenty of water.
	Suggest how this helps the desert plants to survive.
	[1]
	Most leaves have stomata on their lower surfaces.
	Plants that live in water, with leaves that float on the water, often have stomata on the upper surface of their leaves.
	Suggest how this helps the water plants to survive.
•	[2]
	Plants must have a good supply of magnesium ions, in order to grow well.
	State why they need magnesium ions.
	[1]

		22	
(a) R	adio waves are electromag	gnetic waves. Sound waves are not.	aCa
S	tate three other ways in wh	nich radio waves differ from sound waves.	
1		22 gnetic waves. Sound waves are not. hich radio waves differ from sound waves.	
2			
3			
			[3]
 (b) D	raw lines to connect each t	type of radiation to its use.	[3]
 (b) D	raw lines to connect each t radiation	type of radiation to its use. use	[3]
 (b) D	radiation	use	[3]
 (b) D			[3]
 (b) D	radiation	use	[3]
 (b) D	radiation gamma	use examining bones and teeth	[3]
 (b) D	radiation gamma microwave infra-red	use examining bones and teeth remote controls for television sets satellite communications	[3]
 b) D	radiation gamma microwave	use examining bones and teeth remote controls for television sets	[3]

www.papaCambridge.com 23 (c) A student carried out an experiment to find the speed of sound in air by watching listening to a bell being rung. He stood 500 m from the bell. bell tower student 500 m Fig. 10.1 The sound took 1.5s to travel from the bell to the student. Calculate the speed of sound. State the formula that you use and show your working. formula used working _____m/s [2] (d) The mass of the bell is 10 000 kg and it has a volume of 1.1 m^3 . Calculate the density of the bell. State the formula that you use and show your working. formula used

working

www.papacambridge.com 11 Fig. 11.1 shows apparatus a student used to investigate temperature change occurred during chemical reactions.

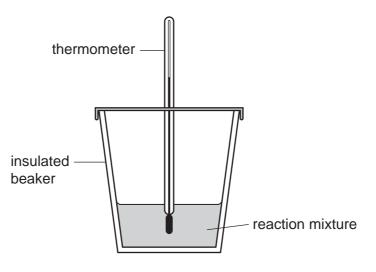


Fig. 11.1

The student added reactants to the insulated beaker and stirred the mixture. She recorded the final temperature of each mixture.

At the start of each experiment, the temperature of the reactants was 22 °C.

Table 11.1 contains the results the student obtained.

Table	11	.1
-------	----	----

experiment	reactant A	reactant B	final temperature/°C
1	dilute hydrochloric acid	sodium hydrogencarbonate	16
2	dilute hydrochloric acid	potassium hydroxide solution	26
3	magnesium	copper sulfate solution	43
4	copper	magnesium sulfate solution	22

(a) (i) Explain which experiment, 1, 2, 3 or 4, was a neutralisation reaction between an acid and an alkali.

experiment	
explanation	
	[1]

	25 State and explain which experiment, 1, 2, 3 or 4, was an endothermic reactive experiment	
	25	
(ii)	State and explain which experiment, 1, 2, 3 or 4, was an endothermic reaction	Can
	experiment	
	explanation	
		[1]
(iii)	Suggest why the temperature did not change when copper was added magnesium sulfate solution.	to
		[1]
• •	e student used the apparatus in Fig. 11.1 to carry out two further experiments, 5 a o investigate the exothermic reaction between zinc and copper sulfate solution.	nd
	experiment 5 the student used zinc powder and in experiment 6 she used a sing ce of zinc. The mass of zinc in both experiments was the same.	gle
	ggest and explain briefly in which experiment, 5 or 6 , the temperature increas re quickly.	ed
exp	periment	
exp	lanation	
		[2]
• •	en reactive metals are added to dilute acid, the metal reacts and dissolves and sis given off. Unreactive metals do not dissolve in acid.	la
(i)	Name the gas that is given off, and describe how you would test for this gas.	
	gas	
	test	
		[2]
(ii)	A student has a mixture of powdered zinc and powdered copper.	
	Suggest and explain how the student could use some dilute hydrochloric acid a usual laboratory apparatus to obtain some copper from this mixture.	nd
		[3]

- www.papacambridge.com **12 (a)** Define the term *respiration*.
 - (b) Complete Table 12.1 to show the approximate percentages of oxygen, carbon dioxide and nitrogen in inspired and expired air.

Т	ab	le	12.	1
	uN	10		

gas	percentage in inspired air	percentage in expired air
oxygen	21	
carbon dioxide		4
nitrogen		

[3]

(c) Outline how oxygen is transported to a respiring cell in a muscle.

 [2]

BLANK PAGE

VI VII 0	Helium Helium	2	16 19 20		Oxygen Fluorine Neon 8 9 10	32 35.5 40	Cthorine 18	80	Se Br Krahn Statelium Bruning Krahn	35 36		Tellurium lodine Xenon 52 53 54		Polonium Astatine Radon 84 85 86			169 173 175 T	Thulium Ytterbium Lutetium 69	No No	Mendelevium Nobelium Lawrencium 101 102 103	Papa	
ا۷ ۷		-	12 14		Carbon Nitrogen 7	28 31	Pho 15		Ge As	33	119 122 Sh	Tin Antimony 51	207 209 Dh	83 E			165 167	Holmium Erbium 68	E E	m Fermium 100	p.).	
=			11		5 Boron 6 C		AL Auminium 13		Ga Gallinn		115 I n	Indium 50	204	82				Dysprosium Ho 67		Californium 98	id pressure (r.t.	
									Cu Zn	30	108 112 Ag Cd	Silver Cadmium 47 48	197 201	Gold Mercury 79 80			157 159	m 65	Br Br	97 97	The volume of one mole of any gas is 24dm^3 at room temperature and pressure (r.t.p.).	
									Cohalt Nickel	28	103 106 Rh Pd	Rhodium Palladium 46	192 195	Platinum 78			150 152	ез Е	Du	- 62 ×	24 dm ³ at room	
-	+ T	£							E C	27		45	190	17				Promethium 62	g	Neptunium Pluto 93	of any gas is	
										24 25		Molybdenum Technetium 42	184 186	N ngsten F 75			141 144	eodymium Ne	238 1	tactinium Uranium 92	ne of one mole	
								51	Variation	23		Niobium 41	181 F	Tantalum 73 7			140		232 Th	90 Thorium	The volur	
								45 48	Scandium Tranium	22	89 91 Y Zr	Yttrium Zirconium 39 40	139 178	m * 72	227 AC	Actinium 89 †	series	ries	a = relative atomic mass X = atomic svmbol	b = proton (atomic) number		
=			6	Be	Beryllium 4	24	Magnesium 12	40	Ca		® Sr	Strontium 38	137		226 Ra	Radium 88	*58-71 Lanthanoid series	†90-103 Actinoid series	a a=re			
_			7	:-	Lithium 3	23	Sodium 11	39	Rotassium	19	85 Rb	Rubidium 37	133	Caesium 55	ŗ	Francium 87	*58-71 Lá	190-103	Kev	<u>م</u>		

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of