

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

Maride Co.

*	
Ν	
∞	
0	
И	
Ν	
7	
_	
З	
œ	
6	

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

CO-ORDINATED SCIENCES

0654/23

Paper 2 (Core)

May/June 2012

2 hours

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in. Write in dark blue or black pen.

You may use a soft pencil for any diagrams, graphs, tables or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO **NOT** WRITE IN ANY BARCODES.

Answer all questions.

A copy of the Periodic Table is printed on page 28.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

For Exam	iner's Use
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
Total	

This document consists of 26 printed pages and 2 blank pages.

1 (a) Most atoms of metallic elements found in the Earth's crust exist in compounds ores which are contained in rocks.

www.papaCambridge.com The chemical formulae of some metal compounds found in ores, together with the names of the ores, are shown below.

argentite A	Ag_2S
-------------	---------

chromite FeCr₂O₄

galena PbS

scheelite CaWO₄

(i)	A binary	compound i	is one th	at contains	only two	different	elements
-----	----------	------------	-----------	-------------	----------	-----------	----------

State which of the compounds in the list above are binary compounds.

[1]

(ii) State the ore from which the metallic element tungsten could be extracted.

Γ1	ı٦	ı
 Γ,	, 1	ı

(b) Fig. 1.1 shows a diagram of an atom of the element lithium. This atom has a nucleon number (mass number) of seven.

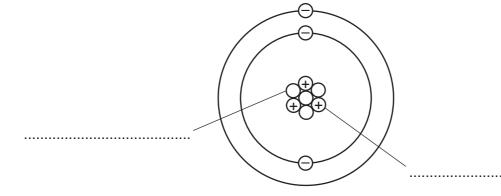
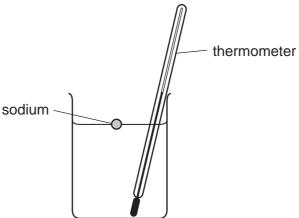



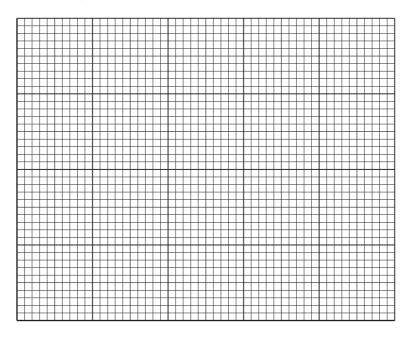
Fig. 1.1

Complete Fig. 1.1 by labelling the particles that exist in the nucleus.

[2]

(c) (i) A teacher dropped a small piece of sodium into a beaker containing cold was a thermometer. She stirred the mixture until all of the sodium had reacted.

Predict **two** observations that could be made as the sodium reacts with the water. 1 ______ 2 [2] (ii) Potassium is another element in the same group of the Periodic Table as sodium. State one way in which the reaction of potassium with cold water would be different from that of sodium. [1] (iii) Complete the word chemical equation for the reaction between potassium and water. potassium + water +


2 An athlete warms up by running along a race track.

He accelerates from rest and after 10 seconds reaches a maximum speed of 7 m/s.

He continues at this speed for another 10 seconds.

During the next 5 seconds, he steadily slows down and stops.

(a) Draw a speed-time graph to show the motion of the athlete.

[4]

(b) He then competes in a 200 m race. He completes the race in 25 seconds.

Calculate his average speed.

State the formula that you use and show your working.

formula used

working

 m/s	[2

(c) During a race the athlete cools down by sweating.

	www.	
	5	
Dui	ring a race the athlete cools down by sweating.	For iner's
(i)	Describe and explain, in terms of the movement of water molecules, he evaporation cools down the athlete.	For viner's
		Oh
		[
		[3]
(ii)	State two factors which would increase the rate of evaporation.	
	and	[1]

3	(a)	Exp	plain what is meant by the term <i>enzyme</i> .				
			[2]				
	(b)	Fig	. 3.1 shows the effect of pH on the activity of an enzyme.				
		re	ate of eaction 1 2 3 4 5 6 7 8 9 10 11 12 pH Fig. 3.1 scribe the effect of pH on the activity of this enzyme.				
			[2]				
	(c)		rotease enzyme works in the human stomach, where hydrochloric acid is secreted. s enzyme is adapted to work best in these conditions.				
		(i)	On Fig. 3.1, sketch a curve to show how pH affects the activity of this protease enzyme. [1]				
		(ii) After the food has been in the stomach for a while, it passes into the duodenum. Pancreatic juice, which contains sodium hydrogencarbonate, is mixed with the food in the duodenum.					
			Explain why the protease enzyme stops working when it enters the duodenum.				

[2]

	the state of the s	
	7	
(iii)	Name the substrate and product of a protease enzyme.	For liner's
	substrate	Oride
	product [2]	Se. CON
(iv)	Explain how the activity of this enzyme makes it possible for body cells to obtain nutrients from the food inside the digestive system.	
	[2]	

		2	
1	(a)	A car tyre is inflated with air.	Co
		Explain how the air molecules in the tyre exert a pressure on the wall of the tyre.	1
			[2]
	(b)	Many forces act on a car tyre during a car journey.	
		State three effects that forces can have on an object.	
		1	
		2	
		3	
			[2]
	(c)	Fig. 4.1 shows a car travelling in a straight line. The car is decelerating (slowing dow	n).
		F ← B	
		Fig. 4.1	
		The total forward force on the car is F and the total backward force is B .	
		Which force is greater, F or B ?	
		Explain your answer.	

(d) Using some of the words below, complete the sentences to explain the energy of which take place in a car when petrol (gasoline) is used to power the car.

www.PapaCambridge.com boiled burned cooled chemical kinetic heat nuclear sound energy. The petrol is Petrol (gasoline) contains in the engine to produce heat energy. The heat energy is changed into _____ energy which moves the car. This process is not very efficient and much energy is wasted as energy and _____energy. [5] (e) Car brake lights (stop lights) light up when the driver presses on the footbrake pedal. The pedal acts as a switch. Draw a circuit diagram including a battery to show how this works. Design your circuit so that if one brake light fails, the other still lights up.

5 In hydrocarbons, carbon atoms are joined in chains of various lengths.

Table 5.1 shows information about some hydrocarbons.

Table 5.1

alkanes	
molecular structure	boiling point/°C
H H H—C—C—H H H	-87
H H H H—C—C—C—H H H H	-42
H H H H	0
H H H H H 	36

alkenes
molecular structure
H H — C—C — H H
H H H
H H H H
H H H H H

- (a) Table 5.1 contains examples of both saturated and unsaturated hydrocarbons.
 - (i) Fig. 5.1 shows a simplified diagram of the industrial process used to produce unsaturated hydrocarbons.

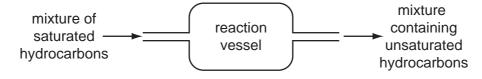


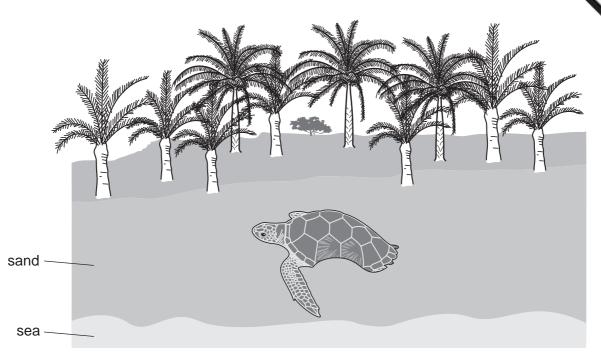
Fig. 5.1

State the name of this process. [1]

	(ii)	The reaction in (i) requires a catalyst. State the meaning of the term <i>catalyst</i> .
		State the meaning of the term <i>catalyst</i> .
		[2]
((iii)	Describe a chemical test that is used to show whether a hydrocarbon is saturated or unsaturated.
		[2]
(b)	The gas	alkanes in Table 5.1 occur naturally in deposits of petroleum (crude oil) and natural.
	Pet	roleum is separated into simpler mixtures by fractional distillation at an oil refinery.
	(i)	Fractional distillation relies on differences in the boiling points of hydrocarbons.
		Describe the trend in boiling point shown by the alkanes in Table 5.1.
		[1]
	(ii)	Refinery gas is a useful fraction obtained from petroleum.
		State one use for refinery gas.
		[1]
((iii)	Gasoline is a mixture of hydrocarbons that is used as car fuel.
		When gasoline is burned in car engines one of the waste gases (exhaust gases) is carbon monoxide.
		Describe briefly how carbon monoxide is formed in a car engine and explain why this gas is considered to be a serious air pollutant.
		[2]

For iner's **BLANK PAGE**

www.PapaCambridge.com


www.PapaCambridge.com 6 (a) Each time a human child is born, there is an equal chance that it will be a boy or Complete the genetic diagram to explain why.

sex of parents female male genotype of parents XX...... gametes and

> gametes from woman gametes from man

> > [3]

(b) Hawksbill turtles are an endangered species. They lay their eggs in nests in the on a beach.

The sex of hawksbill turtles is determined by the temperature of the sand in which the eggs develop.

- At 29 °C, equal numbers of males and females develop.
- Higher temperatures produce more females.
- Lower temperatures produce more males.
- (i) Researchers measured the temperature, at a depth of 30 cm, in two different parts of a beach, on Antigua, where hawksbill turtles lay their eggs. The results are shown in Fig. 6.1. The tops of the bars represent the mean temperature.

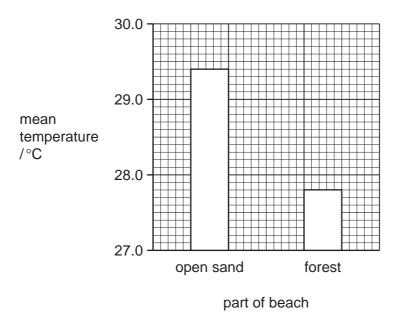


Fig. 6.1

		eference to Fig. 6.1, description	cribe the effect of the p	resence of trees
				[2]
(ii)		searchers counted the pro the two different parts of		nale turtles hatching from re shown in Table 6.1.
		Та	ble 6.1	
part of	beach	nests producing more males than females	nests producing more females than males	nests producing equal numbers of females and males
open s	sand	0	16	0
in for	est	36	0	0
		e information in Fig. 6.1 to shown in Table 6.1.	explain the results for n	ests in open sand and in
(iii)	Sugges		ght become extinct if all t	the forest by the beaches
	••••••			
	•••••			[2]
resu				ction of species, that can
1 <u>.</u>				

	The state of the s	
	16 A. D.	
(a)	The three types of nuclear radiation are alpha, beta and gamma. They can be ideal by their different penetrating powers. Alpha radiation cannot penetrate paper. Explain how you could identify beta and gamma radiations by their penetrating powers.	m
	Explain how you could identify beta and gamma radiations by their penetrating powers.	-
	beta radiation	1
		ı
	gamma radiation	
	[2]	
(b)	Gamma radiation is an electromagnetic wave with a short wavelength.	
	Explain the meaning of the term <i>wavelength</i> . You may draw a diagram if it helps your answer.	•
	[2]	
(c)	Radon is a gas that emits alpha radiation.	
	Explain why alpha radiation is dangerous to human beings.	
		•
		i

	The state of the s
	17 A. D.
Wa drin	ter supplies are often impure and have to be purified to make them safe for hundrals.
(a)	State one process that is used to make water safe for humans to drink.
	Explain, for the process you have chosen, how this process helps to purify the water.
	process
	how it purifies
	[2]
(b)	Water is a compound which contains the elements hydrogen and oxygen.
	Describe one difference, other than physical state, between the compound water and a mixture of the elements hydrogen and oxygen.
	וכו

Table 8.1

Table 8.1 shows info with water.	18 rmation about water a Table 8 .	and two compounds	that can form most
compound	melting point/°C	boiling point/°C	solubility in water
water	0	100	_
sodium chloride	801	1413	soluble
hexane	– 95	69	insoluble

(i)	Describe briefly how a sample of sodium chloride could be obtained from a solution of sodium chloride.
	[2]
(ii)	Use the information in Table 8.1 to predict and explain whether or not a mixture of hexane and water could be separated at room temperature (20 °C) by the method of filtration.
	[2]

(d) A student was given some small pieces of two solid elements. One of these ele was a metal and the other was a non-metal.

www.PapaCambridge.com The student burned the samples in air, using the apparatus shown in Fig. 8.1. The oxide of each element was produced.

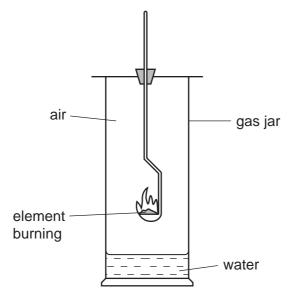
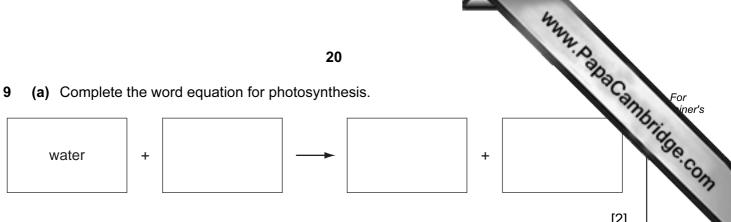



Fig. 8.1

(i) One of the oxides was a solid at room temperature and the other was a gas.

State and explain, in terms of the type of chemical bonding involved, which oxide

	was a soliu.
	type of element whose oxide was solid
	explanation
	[2]
(ii)	The student also found that both of the oxides dissolved and reacted with the water in the bottom of the gas jar.
	State and explain the colour of full range indicator (Universal Indicator) when a few drops are added to the solution formed by the oxide of the metal.
	colour
	explanation
	[2]

[2]

(b) Fig. 9.1 is a photograph of a cross-section of a leaf, taken through a microscope.

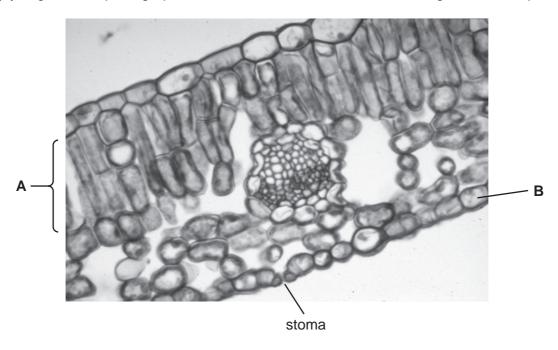


Fig. 9.1

Name the parts of the leaf labelled **A** and **B**.

	A	
	В	[2]
(c)	There are small gaps in the lower surface of the leaf, called stomata.	
	Explain the role of stomata in photosynthesis.	

(d)	Stomata allow water vapour to diffuse out of the leaf. State the correct term for the loss of water vapour from a leaf.
	State the correct term for the loss of water vapour from a leaf.
	[1]
(e)	Plants that live in hot, dry deserts often have fewer stomata than plants that live in places where there is plenty of water.
	Suggest how this helps the desert plants to survive.
	[1]
(f)	Most leaves have stomata on their lower surfaces.
	Plants that live in water, with leaves that float on the water, often have stomata on the upper surface of their leaves.
	Suggest how this helps the water plants to survive.
	[2]
(g)	Plants must have a good supply of magnesium ions, in order to grow well.
	State why they need magnesium ions.

For iner's

(a) Ra	adio waves are electroma	agnetic waves. Sound waves are not. which radio waves differ from sound waves.
St	tate three other ways in v	which radio waves differ from sound waves.
1		
2		
3		
••••		[3]
 (b) Dr	raw lines to connect each	[3] type of radiation to its use.
 (b) Dr	raw lines to connect each	
 (b) Di		n type of radiation to its use.
 (b) Di	radiation	n type of radiation to its use. use
 (b) Dr	radiation gamma	use examining bones and teeth

[3]

(c) A student carried out an experiment to find the speed of sound in air by watch. listening to a bell being rung.

He stood 500 m from the bell.

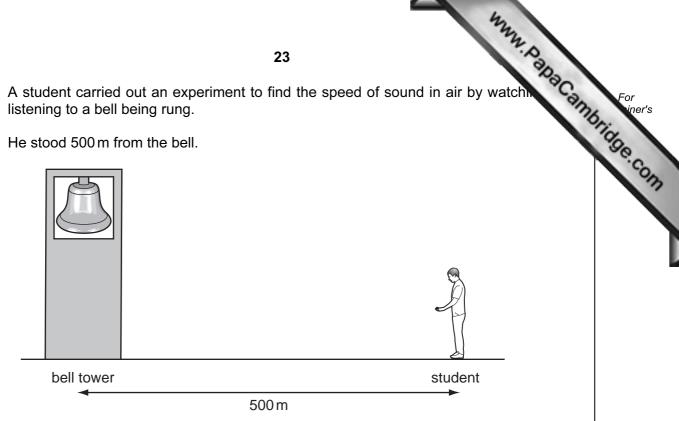


Fig. 10.1

The sound took 1.5s to travel from the bell to the student.

Calculate the speed of sound.

State the formula that you use and show your working.

formula used

working

_____m/s [2]

(d) The mass of the bell is 10 000 kg and it has a volume of 1.1 m³.

Calculate the density of the bell.

State the formula that you use and show your working.

formula used

working

	kg/m³	[2]
--	-------	-----

www.PapaCambridge.com 11 Fig. 11.1 shows apparatus a student used to investigate temperature change occurred during chemical reactions.

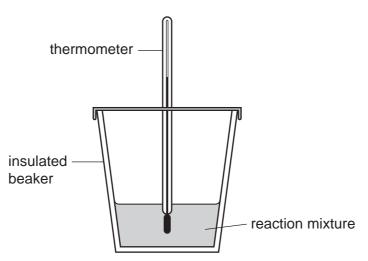


Fig. 11.1

The student added reactants to the insulated beaker and stirred the mixture. She recorded the final temperature of each mixture.

At the start of each experiment, the temperature of the reactants was 22 °C.

Table 11.1 contains the results the student obtained.

Table 11.1

experiment	reactant A	reactant B	final temperature/°C
1	dilute hydrochloric acid	sodium hydrogencarbonate	16
2	dilute hydrochloric acid	potassium hydroxide solution	26
3	magnesium	copper sulfate solution	43
4	copper	magnesium sulfate solution	22

[1]

	(ii)	State and explain which experiment, 1, 2, 3 or 4, was an endothermic reaction
		experiment
		explanation
		[1]
	(iii)	Suggest why the temperature did not change when copper was added to magnesium sulfate solution.
		[1]
(b)		e student used the apparatus in Fig. 11.1 to carry out two further experiments, 5 and o investigate the exothermic reaction between zinc and copper sulfate solution.
		experiment 5 the student used zinc powder and in experiment 6 she used a single see of zinc. The mass of zinc in both experiments was the same.
	_	gest and explain briefly in which experiment, 5 or 6 , the temperature increased requickly.
	ехр	eriment
	ехр	lanation
		[2]
(c)		en reactive metals are added to dilute acid, the metal reacts and dissolves and a is given off. Unreactive metals do not dissolve in acid.
	(i)	Name the gas that is given off, and describe how you would test for this gas.
		gas
		test
		[2]
	(ii)	A student has a mixture of powdered zinc and powdered copper.
		Suggest and explain how the student could use some dilute hydrochloric acid and usual laboratory apparatus to obtain some copper from this mixture.
		101

For iner's

•	(-\		20	anac.
2	(a)	Define the term respirate	ON.	18
				[2]
	(b)	Complete Table 12.1 to and nitrogen in inspired		ages of oxygen, carbon dioxide
	Γ		namentana in inanimal sin	navantana in avrimad air
	L	gas	percentage in inspired air	percentage in expired air
		oxygen	21	
		carbon dioxide		4
		nitrogen		
				[3]
	(c)	Outline how oxygen is tr	ransported to a respiring cell in a	a muscle.

For iner's

[2]

BLANK PAGE

www.PapaCambridge.com

The Periodic Table of the Elements DATA SHEET

0	4 He lium	20 Neon	_ = 5	I. 🛌 ō	i	_ =		.a = =
	7	° 2 z	40 Ar Argon	84 K rypton 36	131 Xeno Xeno	Radon 86		175 Lu Lutetium
II/		19 Fluorine	35.5 C1 Chlorine	80 Br Bromine 35	127	At Astatine 85		773 Ytterbium
		16 Oxygen 8	32 Sul fur	79 Selenium 34	128 Te Tellurium 52	Po Polonium 84		169 Ta
>		14 N Nitrogen 7	31 P Phosphorus 15	75 AS Arsenic 33	Sb Antimony 51			167 E rbium
2		12 C Carbon 6	28 Si licon	73 Ge Germanium		207 Pb Lead		165 Holmium
Ξ		11 Boron	27 A1 Aluminium 13	70 Ga Gallium	115 D Indium			162 Dy Dysprosium
				65 Znc 2nc	112 Cd Cadmium 48	201 Hg Mercury 80		159 Tb
				64 Copper	108 Ag Silver 47	Au Sold 79		157 Gd Gadolinium
				59 Nickel	106 Pd Palladium 46	195 Pt Platinum 78		152 Eu
				59 Co Cobalt	103 Rhodium 45	192 r r		Samarium
	Hydrogen			56 Fe Iron	Ruthenium	190 OS Osmium 76		Pm Promethium
				55 Mn Manganese 25	Tc Technetium 43	186 Re Rhenium 75		144 Neodymium
				52 Cr Chromium 24	96 Mo Molybdenum 42	184 W Tungsten 74		141 Pr Praseodymium
				51 V Vanadium 23	93 Nb Niobium 41	181 Ta Tantalum		140 Cerium
				48 T Ttanium	91 Zr Zirconium 40	178 # Hafnium 72		
				45 Scandium 21	89 Y	139 La Lanthanum s	227 Ac Actinium †	series eries
=		9 Be Beryllium 4	24 Mg Magnesium	40 Ca Calcium	88 Sr Strontium 38	137 Ba Barium 56	226 Ra Radium 88	*58-71 Lanthanoid series
_		7 Li Lithium	23 Na Sodium	39 K Potassium 19	Rb Rubidium 37	Csesium 55	Francium 87	*58-71 Le
		1	III IV V VI Hydrogen 1	III IV V VI H Hydrogen				

-															
oorioo bi	140	141	144		150	152	157	159	162	165	167	169	173	175	
ad selles	ပိ	ቯ	Š	Pm	Sm	En	gg	Q L	ð	운	ш	ш	Υb	Ľ	
Selles	Cerium 58	Praseodymium 59	Neodymium 60	Promethium 61	Samarium 62	Europium 63	Gadolinium 64		Dysprosium 66	Holmium 67	Erbium 68	Thulium 69	Ytterbium 70	Lutetium 71	
a = relative atomic mass	232		238												
X = atomic symbol	드	Ра	-	ď	Pu	Am	CB	쑮	ర	Es	Fm	Md	Š	בֿ	4
b = proton (atomic) number	Thorium 90	Protactinium 91	Uranium 92	Neptunium 93	Plutonium 94	Americium 95	Curium 96	Berkelium 97	Californium 98	Einsteinium 99	Fermium 100	Mendelevium 101	Nobelium 102	Lawrencium 103	n.
	F													•	Par
	l ne v	I ne volume ot one mole of any gas is 24 dm $^{\circ}$ at room temperature and pressure (r.t.p.).	one mole	or any ga	IS IS 24 dr	ກ ^ະ at roor	n tempera	ature and	pressure	(r.t.p.).					000
													•	CO	1
													1	no	\
													30	Tin	rios
													. O.	1	
													0		
													1		

Key

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.