

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

Original Constitution

*	
0	
7	
9	
6	
Ν	
Ν	
4	
∞	
σ	
م	

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

CO-ORDINATED SCIENCES

0654/21

Paper 2 (Core)

October/November 2012

2 hours

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use a soft pencil for any diagrams, graphs, tables or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO **NOT** WRITE IN ANY BARCODES.

Answer all questions.

A copy of the Periodic Table is printed on page 28.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

For Exam	iner's Use
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
Total	

This document consists of 28 printed.

www.PapaCambridge.com 1 (a) Complete Table 1.1 by choosing one of the words from the list to match statement.

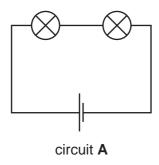

ammeter	ampere	electron	insulator
ohm	volt	voltmeter	watt

Table 1.1

statement	word
a particle with a negative electrical charge	
an instrument that measures electrical current	
the unit of potential difference	
a material that does not conduct electricity	

[4]

(b) The diagram shows two circuits **A** and **B**. All the lamps and both cells are the same.

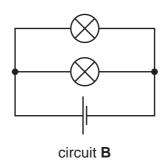


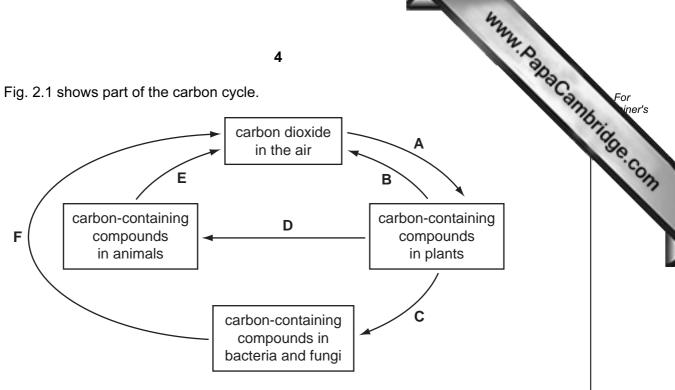
Fig. 1.1

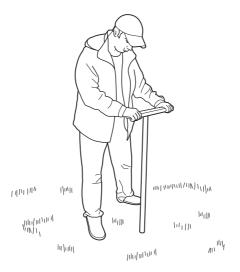
(i) One lamp is unscrewed from circuit A. State what happens to the other lamp. Explain your answer.

[2]

	Explain why lights in a house are connected as in circuit B and not as in circ
	3
(ii)	Explain why lights in a house are connected as in circuit B and not as in circ
	[2]
(iii)	The resistance of each lamp is 1.2Ω .
	Calculate the combined resistance of the two lamps in circuit A .
	State the formula that you use and show your working.
	formula used
	working
	working
	Ω [2]

(a) Fig. 2.1 shows part of the carbon cycle. 2




Fig. 2.1

(i)	State the letter or letters, A, B, C, D, E or F, that represent	
	photosynthesis,	
	respiration.	[2]
(ii)	Name one carbon-containing compound in plants.	
		[1]
(iii)	State the approximate percentage of carbon dioxide in the air.	
		- 4

(b) Earthworms play an important part in the carbon cycle. They eat dead leaves, and egest material containing plant nutrients into the soil.

Explain the meaning of the term egest.	
	[2]

www.PapaCambridge.com (c) In Florida, USA, some people collect earthworms by vibrating the soil. Earth respond to vibrations in the ground by crawling out of their burrows onto the surface.

A student investigated the effect of different frequencies of vibrations on the numbers of earthworms that emerged from the soil. Fig. 2.2 shows his results.

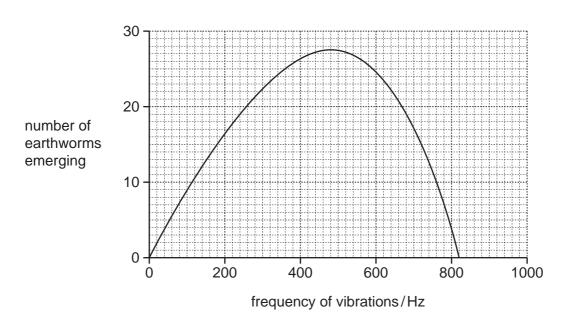


Fig. 2.2

(i)	Describe the effect of different frequencies of vibrations on the numbers earthworms emerging.	of
	[2]

(ii) Fishermen catch large numbers of earthworms to use as bait.

www.PatraCambridge.com There are concerns that too many worms are being collected in some parts Florida, USA. Suggest why it is important to conserve earthworms. [2] (iii) Moles are predators that live underground and eat earthworms. When moles burrow through the ground, they produce vibrations of around 500 Hz. Explain why the genes of earthworms that respond to vibrations of this frequency have a strong chance of being passed on to the next generation.

(a) Fig. 3.1 shows how a digital pH meter is used to measure the pH of some liquids. 3

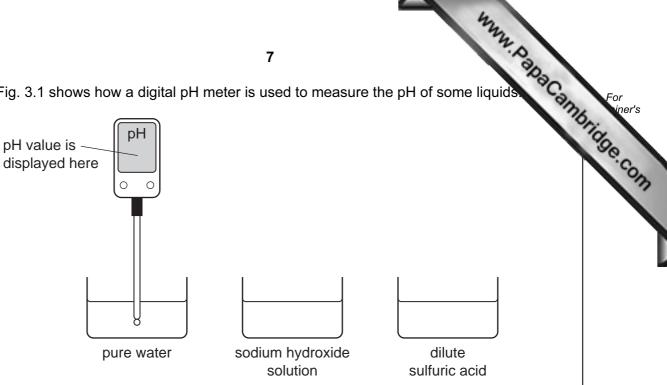


Fig. 3.1

(i) Complete Table 3.1 by suggesting suitable pH values for the different liquids.

Table 3.1

liquid	рН
pure water	
sodium hydroxide solution	
dilute sulfuric acid	

[2]

(ii)	Suggest one advantage of using a digital pH meter rather than a piece of litr paper to compare the acidity of two different acid solutions.	nus
		[1

(iii) Dilute acids are aqueous solutions that contain dissolved ions.

Table 3.2 shows the names of the ions in two common acids.

Table 3.2

name of dilute acid	names of dissolved ions
nitric acid	hydrogen ions and nitrate ions
sulfuric acid	hydrogen ions and sulfate ions

A student is given an unlabelled beaker which is known to contain either dilute nitric acid or dilute sulfuric acid.

Describe how the student could use a solution of acidified barium chloride to out which acid the beaker contains.	find
	[2]

www.PapaCambridge.com

issolves For iner's

- (b) When a reactive metal is added to a dilute acid, the metal reacts and dissolves gas is given off.
 - (i) Name one reactive metal that must not be added to a dilute acid.

Explain why this metal should not be added to acid.

metal ______explanation _______[2]

(ii) Fig. 3.2 shows how a student tested the gas given off when magnesium was added to dilute hydrochloric acid.

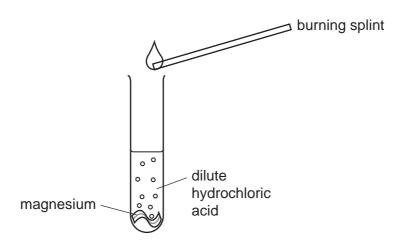


Fig. 3.2

State and explain what the student observed when he carried out this test.

explanation [2]

(iii) Unreactive metals do not react in dilute acid.

A student is given a mixture of powdered magnesium and powdered copper.

www.PapaCambridge.com Describe and explain how the student could use dilute hydrochloric acid and usual laboratory apparatus to obtain a sample of copper from this mixture.

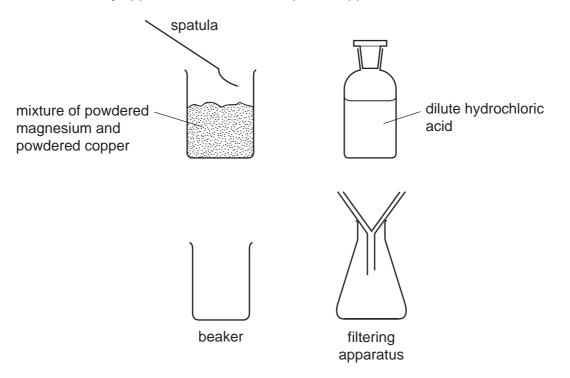
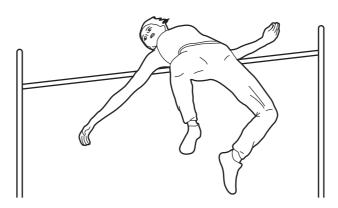



Fig. 3.3

[3]

www.PapaCambridge.com

4 An athlete competes in the high jump.

(a)		scribe the energy changes that take place between the athlete taking off and landil er the high jump.	ng
			[3]
(b)	As	the athlete moves upwards she decelerates.	
	Naı	me the force causing this deceleration and state its source.	
	ford	ce	
	SOL	ırce	[2]
(c)	Afte	er jumping, the athlete is sweating.	
	(i)	Describe, in terms of particles, how evaporation occurs from the surface of a liqui	d.
			••••
			[2]
	(ii)	Explain how this process will cool down the athlete.	
			[1]

12	Cal	For iner's
	[2]	Se C

[2]

5	Seed	ds r	need oxygen for respiration when they are germinating.
	(a)	(i)	Write the word equation for aerobic respiration.

(ii) List **two** environmental conditions, other than a supply of oxygen, that all seeds require for germination.

'	
2	

(b) An investigation was carried out to find the effect of temperature on the rate of respiration of germinating seeds.

Four experiments, $\bf A$, $\bf B$, $\bf C$ and $\bf D$, were set up. Each experiment used either germinating or dead seeds.

The results are shown in Table 5.1.

Table 5.1

experiment	seeds	temperature/°C	relative rate of respiration
Α	germinating seeds	0	1
В	germinating seeds	10	2
С	germinating seeds	20	4
D	dead seeds	20	0

(i)	Explain why it was important to include set D in the experiment.
	[1]
(ii)	With reference to Table 5.1, describe the effect of temperature on the rate of respiration of germinating seeds.
	[2]

W.	
13 Respiration is controlled by enzymes	
Respiration is controlled by enzymes.	For iner's
Predict and explain the rate of respiration of germinating seeds at a temperature 60 °C.	For iner's
predicted results	On
explanation	
[2]

www.PapaCambridge.com Some types of firework are made by filling a cardboard tube with firework mixture. mixture is made from several solid substances which have been powdered and m together.

Fig. 6.1 shows a typical firework.

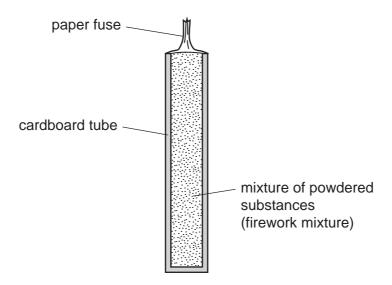


Fig. 6.1

When the paper fuse is lit, exothermic chemical reactions occur inside the firework.

(i)	State two forms of energy that are released when the firework mixture reacts.		
	and[1]		
(ii)	State the effect on the rate of reaction of using firework mixture in the form of a powder.		
	[1]		
	(i) (ii)		

(b) Some firework mixtures contain aluminium which is oxidised when the firework is lit.

Table 6.1 shows the numbers of protons and electrons in four particles, A, B, C and D, which are involved in the oxidation of aluminium.

Table 6.1

particle	number of protons	number of electrons
Α	8	10
В	13	13
С	8	8
D	13	10

		the transfer of the transfer o
		15
	(i)	State and explain which particle, A , B , C or D , in Table 6.1 is an attempt particle
		particle
		explanation
		[3]
	(ii)	State and explain which two particles in Table 6.1 could be found bonded together in aluminium oxide.
		particles and
		explanation
		[3]
c)	Fire	ework mixtures contain the compound potassium perchlorate, KC <i>l</i> O ₄ .
		en potassium perchlorate is heated, a colourless gas is given off which re-lights a wing splint.
	(i)	State the name of this gas. [1]
	(ii)	Suggest how potassium perchlorate in the firework mixture helps the mixture to burn.
		ro1
		[2]

(a) Choose phrases from the list to complete the sentences.

		May D	
	16	17.00	
oose phrases from the list	to complete the sentences.	age.	For iner's
gamma radiation	infra-red radiation	visible light	Dride
nicrowave radiation	radio radiation	ultraviolet radiation	Secon
human eve can detect			

	The	e human eye can detect	
		can be felt as heat.	
	The	e water in food strongly absorbs [3]
(b)		a nuclear power station, nuclear fuel such as uranium releases energy by the cess of nuclear fission.	Э
	(i)	State what happens to the uranium atoms.	
		[1]
	(ii)	At a nuclear power station, technicians work close to radioactive sources.	
		State one way in which these workers could be harmed by radiation emitted from radioactive sources.	n
		[1]
	(iii)	State two ways in which these workers could be protected from the radiation.	
		1	
		2	
		[2	.]

www.PapaCambridge.com

Please turn over for Question 8.

www.PapaCambridge.com

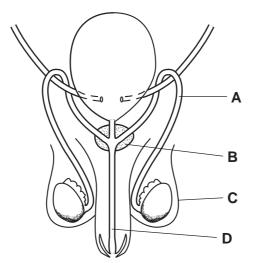
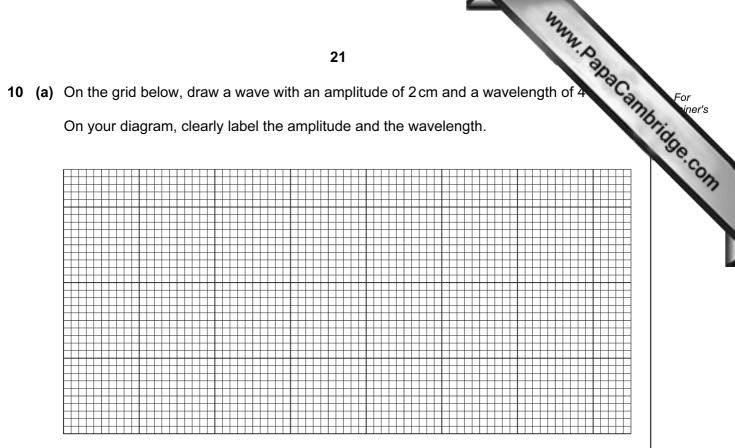
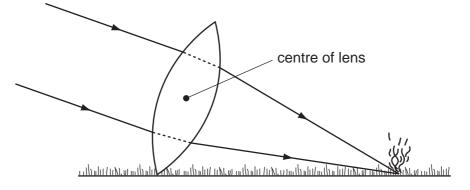



Fig. 8.1

(a) (i)	Name parts C and D .	
	c	
	D	[2]
(ii)	State the functions of parts A and B .	
	A	
	В	[2]
(iii)	On Fig. 8.1, use a label line and the letter S to indicate where male gametes made.	are [1]
(b) Th	ne sex of a baby is determined by the X and Y chromosomes.	
(i)	Name the part of a cell in which the X and Y chromosomes are found.	
		[1]
(ii)	Describe how the sex of a human baby is inherited.	
		[2]

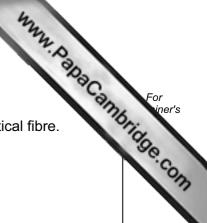
	19	
(c)	The human immunodeficiency virus (HIV) can be transmitted during sexual interesting	For
	Outline two other ways in which HIV can be transmitted.	78 Military
	1	Se.Co.
		133
	2	
	[2]	


Chl	orine	e is released when hydrochloric acid reacts with the compound manganese di
(a)	(i)	Explain why chlorine is an example of an <i>element</i> and not a <i>compound</i> .
		[2]
	(ii)	Describe a safe test for chlorine gas.
		[2]
(b)		orine is found in Group 7 of the Periodic Table. Two of the other elements in oup 7 are bromine and iodine.
	(i)	Chlorine is a gas at room temperature.
		What are the physical states of bromine and iodine at room temperature?
		bromine
		iodine [2]
	(ii)	Explain briefly why a solution of sodium bromide turns orange when chlorine is bubbled through it.
		[2]

[3]

(a)	(1)	amplitude than B .
		What difference would you hear?
		[1]
	(ii)	Two sound waves, ${\bf X}$ and ${\bf Y}$, have the same amplitude but ${\bf X}$ has a greater frequency than ${\bf Y}$.
		What difference would you hear?
		[1]
(c)	Ene	ergy travels to the Earth from the Sun.
	Sta	te whether this transfer of energy is by conduction, convection or radiation.
	Exp	olain your answer.

www.PapaCambridge.com (d) Fig. 10.1 shows parallel rays of light passing through a piece of glass acting as and being focused on the ground.



Eig 10 1

		Fig. 10.1	
	(i)	On Fig. 10.1, use the letter P to label the principal focus of the piece of glass.	[1]
	(ii)	Measure the focal length of the piece of glass in Fig. 10.1.	
		mm	[1]
	(iii)	The glass acting as a lens produces a real image of the Sun.	
		Explain what is meant by the term real image.	
			[1]
(e)	Cal	e mass of the piece of glass is 10 g and the volume is 4 cm ³ . culate the density of the glass. te the formula that you use and show your working. formula used	
		working	
		g/cm ³	[2]

(f) Light is able to travel down optical fibres by total internal reflection.

Complete the diagram to show how the ray of light passes down the optical fibre.

nows som	e of the nutrient	24 s contained in 1 Table 11.1	100g of five food	ds.
		nutr	rients	
food	sugar/g	starch/g	protein/g	fat/g
Α	0	0	13	10
В	14	6	7	0
С	0	0	14	6
D	6	8	12	14
E	9	14	3	0

(a) ((i)	Which two nutrients listed in Table 11.1 are carbohydrates?
		and[1]
(i	ii)	Which nutrient listed in Table 11.1 contains nitrogen atoms in its molecules?
		[1]
(ii	ii)	State the letters of two foods in Table 11.1 that could have come from animals.
		and[1]
(iv	v)	State the letter of one food that would appear orange-brown when tested with iodine solution, and give a purple colour when tested with biuret reagent.
		[1]
(b) T	Гab	ele 11.1 does not contain information about vitamins or minerals.
C	Out	line the symptoms that a person may develop if their diet is deficient in
((i)	vitamin D,
		[1]
(i	ii)	iron.
		[1]

(c)	Explain why eating a lot of foods containing sugar can increase the risk of tooth
	[3]

term

meaning

petroleum

raw material for fuels and other chemicals

catalytic cracking

compound containing only the elements hydrogen and carbon

fractional distillation reaction that produces alkenes

hydrocarbon

process that simplifies a complex mixture

[3]

- (b) Ethanol, C₂H₆O, is a colourless liquid which can be made from ethene, C₂H₄.
 - (i) An incomplete diagram of the structure of one molecule of ethanol is shown below. Complete the diagram.

[1]

(ii) Write a word chemical equation for the reaction in which ethanol is made from ethene.

[1]

www.papaCambridge.com (c) Fig. 12.1 shows apparatus that a student uses to investigate what happens ethanol vapour is heated in the presence of a catalyst.

Ethanol molecules react on the surface of the catalyst. The products of the reaction pass into the bromine solution.

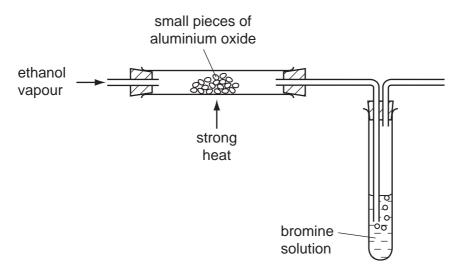


Fig. 12.1

The student observes that the bromine solution rapidly changes colour from orange to colourless.

	(i)	State the type of hydrocarbon produced from ethanol in this reaction.								
										[1]
	(ii)	Explain w compound	•	products	of the	reaction	do n e	ot include	any	aluminium
(d)	When ethene is heated and pressurised in the presence of a catalyst, it is converted into a white compound which becomes solid when it cools.								s converted	
	Name the white solid compound and the type of chemical reaction which has occurred									s occurred.
	nan	ne of white	solid							
	type	e of chemic	al reacti	on						[2]

The Periodic Table of the Elements DATA SHEET

	_ 0 5	0 0 5	o = 5	4 . = to	≈ a e	و ي		ت ت ا
٥	2 T §	9	8			86 Rad		175 Lu Lutetium
		19 Fluorine	35.5 C1 Chlorine	80 Br Bromine 35	127	At Astatine 85		73 Ytterbium
 		16 Oxygen 8	32 S Sulfur	79 Se Selenium 34	128 Te Tellurium	Po Polonium 84		169 Tm
>		14 N itrogen 7	31 P Phosphorus 15	75 AS Arsenic	122 Sb Antimony 51	209 Bi Bismuth 83		167 E rbium
IV		12 Carbon	28 Si Silicon	73 Ge Germanium	119 Sn Tin	207 Pb Lead 82		165 Holmium
≡		11 Boron 5	27 A1 Aluminium 13	70 Ga Gallium 31				162 Dy Dvsprosium
				65 Zn Zinc 30	112 Cd Cadmium 48	201 Hg Mercury 80		159 Tb
				64 Copper	108 Ag Silver 47	197 Au Gold		157 Gd
				59 N ickel	106 Pd Palladium 46			152 Eu
				59 Co Cobalt 27	103 Rh Rhodium 45	192 F		Samarium
	T Hydrogen			56 Fron Iron	Ruthenium	190 Os Osmium 76		Pm
		•		Mn Manganese 25	Tc Technetium 43	186 Re Rhenium 75		Neodymin
				52 Cr Chromium 24	96 Mo Molybdenum 42	184 W Tungsten		141 Pr
				51 V Vanadium 23	93 Nb Niobium 41	181 Ta Tananum		Cerium
				48 1 tanium	2r Zrzonium 40	178 H		
				45 Scandium	89 < Yttrium 39	139 La Lanthanum 57 *	227 Ac Actinium 1	series iries
=		9 Be Beryllium	24 Mg Magnesium	40 Ca Calcium	Strontium	137 Ba Barium 56	226 Ra Radium 88	*58-71 Lanthanoid series
_		7 Li Lithium	23 Na Sodium	39 K Potassium 19	Rubidium	133 Cs Caesium 55	Fr Francium 87	58-71 La 90-103 A
			III IV V VII VIII VIIII VIII VIII VIII VIII VIII VIII VIII VIII VIIII VIII VIII VIII VIII VIII VIII VIII VIII VIIII VIII VIII VIII VIII VIII VIII VIII VIII VIIII VIII VIII VIII VIII VIII VIII VIII VIII VIIII VIII VIII VIII VIII VIII VIII VIII VIII VIIII VIII VIII VIII VIII VIII VIII VIII VIII VIIII VIII VIII VIII VIII VIII VIII VIII VIII VIIII VIII VIII VIII VIII VIII VIII VIII VIII VIIII VIII VIII	III IV V VII V	II II II II II II II I			

www.papaCambridge.com Thulium Mo 69 Erbium Fn 89 Es Californium 98 ರ Terbium ਲ 65 **Currium** Am Samarium 62 Plutonium Pu å Praseodymium 59 Ра 232 **1** Thorium Cerium 28 90 b = proton (atomic) number a = relative atomic mass

X = atomic symbol

Key

7

2

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.