

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

*	
∞	
4	
7	
W	
∞	
_	
W	
W	
σ,	
6	

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

CO-ORDINATED SCIENCES

0654/23

Paper 2 (Core)

October/November 2012

2 hours

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in. Write in dark blue or black pen.

You may use a soft pencil for any diagrams, graphs, tables or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO **NOT** WRITE IN ANY BARCODES.

Answer all questions.

A copy of the Periodic Table is printed on page 28.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

For Exam	iner's Use
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
Total	

This document consists of 28 printed pages.

4				
1	m.			
	3	0.	bridg	
		SC.	1	or
	`	1	76.	or viner's
			100	

- 1 Flowers are organs in which sexual reproduction takes place.
 - (a) (i) Complete the definition of sexual reproduction.

Sexual reproduction is the process involving the fusion of		
nuclei to form a diploid		
and the production of genetically	offspring.	[3]

(ii) State the scientific term for the fusion of two nuclei.

Г4	1	
- 1 1	-	
 Γ.	7	

(b) Fig. 1.1 shows a section through a flower.

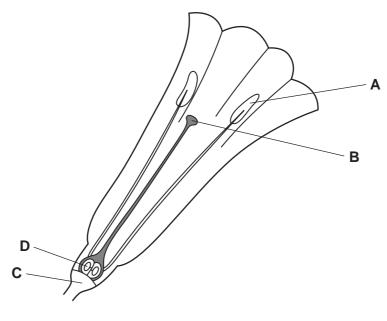


Fig. 1.1

(ii)

A	
В	[2
State the letter of the part in which	

the male gametes are produced,
a zygote is produced. [2]

(c) After pollination, seeds are produced. A student set up an experiment to investig conditions needed for the germination of lettuce seeds.

www.PapaCambridge.com He placed five lettuce seeds on cotton wool in each of five test-tubes. Fig. 1.2 shows the conditions present in each tube.

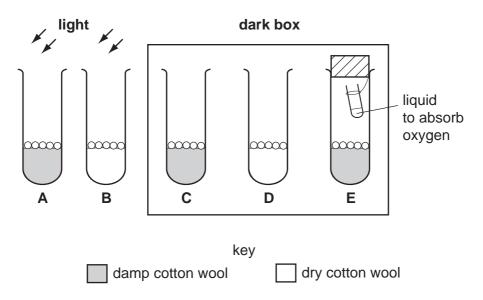


Fig. 1.2

Table 1.1 shows his results.

Table 1.1

tube		conditions	number of seeds that germinated	
Α	water	oxygen	light	5
В	no water	oxygen	light	0
С				5
D				0
E				0

(i)	Complete Table 1.1 to show the conditions present in each tube. Tubes A and have been done for you.	d B [2]
(ii)	What conclusions can the student make from these results?	
		•••••
		[3]

		is a mixture of gases which includes nitrogen and oxygen.
2	The air	is a mixture of gases which includes nitrogen and oxygen.
	(a) (i)	State the percentage of nitrogen in the air.
	(ii)	Air is drawn into car engines where some of the nitrogen and oxygen combine to form oxides of nitrogen.
		Use the examples of air and oxides of nitrogen to state two differences between a mixture and a compound.
		1
		2
		[2]
	(iii)	Oxides of nitrogen in the exhaust (waste) gases from car engines cause air pollution.
		Name one other gaseous oxide in car exhaust gases which is poisonous to humans if it is inhaled.
		[1]
	(b) Nit	rogen gas in the air exists as molecules which have the formula, N_2 .
		nen magnesium burns in air a white solid is formed. This white solid contains ignesium oxide, MgO, and magnesium nitride, Mg_3N_2 .
	(i)	Name the type of chemical bonding in nitrogen and in magnesium nitride.
		nitrogen
		magnesium nitride [2]
	(ii)	Explain your answers to (i).
		707

(iii) State what is shown by the chemical formula of magnesium nitride, Mg_3N_2 .

www.PapaCambridge.com (c) A student carries out a test on a sample of ammonium sulfate as shown in Fig. 2

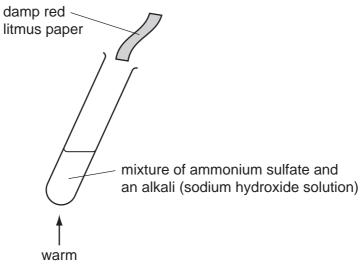


Fig. 2.1

[2
Describe and explain the change in colour of the damp red lithus paper.

3 (a) Fig. 3.1 shows two speed/time graphs for a car.

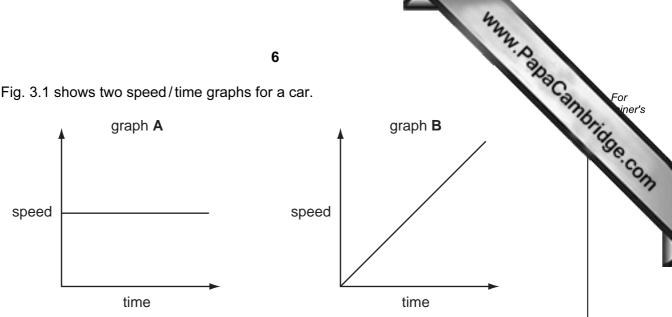


Fig. 3.1

Describe the motion of the car in

graph A ,	
graph B .	[2]

(b) The car travels at 20 m/s for 90 seconds.

Calculate the distance covered.

State the formula that you use and show your working.

formula used

working

m [2

-	iner	's
>	1	
%		
1	50	
1		2
•		7
	7	

		7 e of the car's headlamps has a current of 2A, when the voltage across it is 12	1
(c)	One	e of the car's headlamps has a current of 2A, when the voltage across it is 12	SOC
	(i)	Show that the resistance of the headlamp is 6Ω .	
		State the formula that you use and show your working.	
		formula used	
		working	
			[2]
	(ii)	The car has two of these identical headlamps connected in series .	
		Calculate the total resistance of these two headlamps.	
		State the formula that you use and show your working.	
		formula used	
		working	

Ω	[2]

- Bats use echo location to detect objects around them. To do this, they emit ultrasound
 - (a) (i) Ultrasound is sound that has a frequency too high for a human to hear.

www.papaCambridge.com Suggest a frequency for the ultrasound emitted by bats.

(ii) Underline the word or words that correctly describe an ultrasound wave.

electromagnetic longitudinal transverse [1]

(b) Most bats drink by flying close to the surface of a pond and taking mouthfuls of water from it.

Researchers thought that bats may be able to tell where water is present because the water has a much smoother surface than the surrounding ground. They put several thirsty bats into a closed room. They placed sheets of two rough materials and two smooth materials on the floor.

rough materials	smooth materials
metal grid	metal sheet
tree bark	smooth wood

The researchers counted the number of times the bats tried to drink from the surface of each material. Their results are shown in Fig. 4.1.

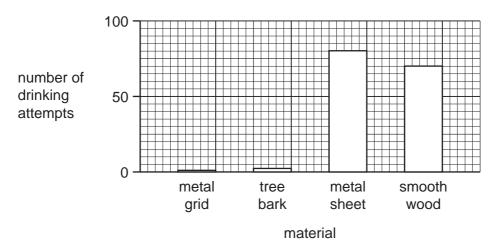
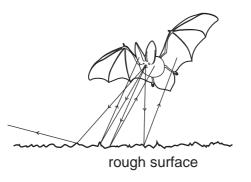



Fig. 4.1

		[2]
(1)	Compare the results for the rough materials and the smooth materials.	

(ii) The ultrasound waves reflect from surfaces and are detected by receptors bat's head.

Fig. 4.2 shows how ultrasound waves are reflected from a rough surface and from a smooth surface. The arrows show the direction in which the sound waves travel.

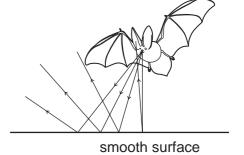


Fig. 4.2

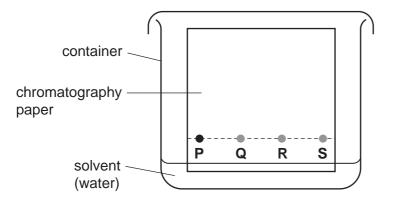
Use the surface.	informat	ion in Fi	g. 4.1 and	d Fig. 4.2	to suggest	how bats	s detect a	water
								[2]

					my.		
			10			· Day	
(c)		ny bats feed on moths. T n bats.	iger moths have re	eflex actions that	help them to	"aCan	
		any bats feed on moths. Tiger moths have reflex actions that help them to m bats. tiger moth has two simple 'ears', each containing a sensory neurone. The sensory turone produces nerve impulses when it detects ultrasound.					
	This cate	s causes the moth to fly ir ch.	n rapid zig-zags, wh	ich makes it more	difficult for t	the bat to	
	(i)	What is the stimulus for	this reflex action?			[1]	
	(ii)	The path taken by a ne that in a human.	rve impulse in a re	flex action in a tiç	ger moth is	similar to	
		Fig. 4.3 shows three neu	irons involved in the	reflex action.			
l	ı	A	\sim	В		C	
7						The second	
		Which neurone, A , B or	Fig. 4.3 C				
		is a sensory neurone,					
		carries the nerve impulse	e to the moth's flight	muscles?		[2]	
	(iii)	Some tiger moths do no	t show this reflex ac	tion.			
		Explain why these moths	s are less likely to pa	ass their genes to	the next ger	neration.	
						[2]	

www.papaCambridge.com

Please turn over for Question 5.

5


www.PapaCambridge.com (a) In many countries, river water is collected and treated to make it safe for hum

State and explain which two of the processes shown below are used to treat river water so that it becomes safe to drink.

> chlorination crystallisation filtration evaporation

first process	
racean why this present is carried out	
reason why this process is carried out	
second process	
racean why this present is carried out	
reason why this process is carried out	
	[4]

(b) Fig. 5.1 shows chromatography being used by a student to investigate mixtures (coloured compounds) used to colour sweets.

key

- www.PapaCambridge.com **Q**, **R**, **S** dyes extracted from three sweets
 - P mixture of common food dyes

Fig. 5.1

Fig. 5.2 shows the appearance of the chromatography paper after several minutes.

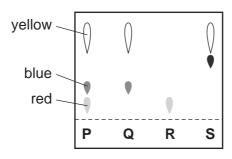


Fig. 5.2

(i)	Deduce and explain the colour of the sweet which contains only one dye.
	colour
	explanation
	[2]
(ii)	State which sweet contained a dye which was ${f not}$ one of the food dyes in the mixture ${f P}.$
	[1]
(iii)	Explain one reason why companies that make food dyes must ensure that their products are pure.
	[1]

6 (a) Fig. 6.1 shows a washing machine.

Fig. 6.1

Complete the sentence below using **two** of the words in the list.

		heat	kinetic	light	potential	sound	
	Αw	ashing machin	e is designed to	o transform ele	ectrical energy into	1	
			energy a	and	en	ergy.	[2]
(b)	(i)	Some of the w	vater inside the	washing macl	nine evaporates.		
		Explain the pr	ocess of evapo	ration in terms	s of particles.		
							[2]
	(ii)	Explain why e	vaporation has				
							[1]

For iner's

(c)	The casing of the washing machine is a solid. T	he water used in it is a liquid.	30.0
	Complete the diagrams below to show the arralliquid.	ingement of particles in a solid and in	1
	solid	liquid	
]	[2]
(d)	Before buying a washing machine, a person which washing machine has the greatest energ Explain the meaning of the term <i>efficiency</i> .		ut

7 (a) Fig. 7.1 shows two human teeth.

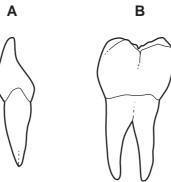


Fig. 7.1

		•		
(i)	Name the two types of	of teeth shown ir	n Fig. 7.1.	
	tooth A			
	tooth B			[2]
(ii)	Explain how tooth B h	nelps to digest a	food such as brea	ad.
				[2]
	or each part of the diges	stive system in	the list below, tick	(✓) the correct function or
	part	ingestion	digestion	absorption
	mouth			
	stomach			
	small intestine			

[3]

www.PapaCambridge.com


	44.	
	17 A. P. P.	
(c)	Starch is a carbohydrate found in many foods that come from plants. Starch morare very large, and must be broken down into smaller sugar molecules before they be absorbed. (i) Name the enzyme in the human digestive system that breaks down starch molecules.	For iner's
	(i) Name the enzyme in the human digestive system that breaks down starch molecules.	Se. COM
	[1]	
	(ii) State one place in the human digestive system where this enzyme is secreted.	
	[1]	_
(d)	Glucose molecules, formed from the digestion of starch, are absorbed from the digestive system into the blood. The blood carries the glucose to the liver.	
	Describe what happens to the glucose when it reaches the liver if the concentration of glucose in the blood is too high.	
	[2]	

- Metallic copper is a very important material that has been extracted from 8 compounds for thousands of years.
 - (a) (i) The wires used in many electrical devices are made from copper.

www.papaCambridge.com State the two properties of metals such as copper, that make them suitable for making electrical wires.

1	
2	[2]

(ii) Copper wires are connected to the mains electrical supply using brass plugs. Brass is an alloy.

Explain the meaning of the term alloy and state one difference in the physical properties of brass compared to copper.

meaning of alloy		 	
difference in physi	ical property	 	
			[2]

(iii) One of the processes used in the extraction of copper involves heating copper(I) sulfide in air.

One of the reactions that occurs is between copper(I) sulfide and oxygen. This reaction also produces sulfur dioxide.

Construct the **word** chemical equation for this reaction.

[4]	
_ [].	

(b) Copper may also be formed by the electrolysis of an aqueous solution of chloride using electrodes made of graphite (carbon).

www.PapaCambridge.com Fig. 8.1 shows a laboratory apparatus a student used to carry out this electrolysis reaction.

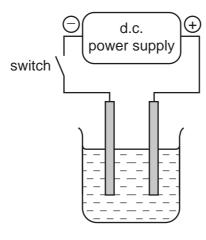


Fig. 8.1

(i)	Name the electrolyte in this electrolysis reaction.	
		[1]
(ii)	Name the product formed and describe what is observed at the surface of earlectrode when an electric current is passing through the circuit.	ıch
	positive electrode	
	product	
	observation	
	negative electrode	
	product	
	observation	[4]

		20	2
(a)	X-rays and γ (gamma) -rays are two	examples of ionising radiation.	abaCan
	Explain the meaning of the term ionis		
			[2]
(b)	A radiographer uses X-rays to see t procedure many times each day.	the bones in a patient's body. She carries or	ut this
	The radiographer goes behind a scre	een before switching on the X-ray machine.	
	Explain why she does this.		
			[2]
(c)	Draw three straight lines to link each property in the right hand column.	h type of radiation in the left hand column w	rith its
		not dangerous	
	α (alpha)		
		stopped by paper	
	β (beta)	least ionising	
	γ(gamma)	travels up to 1 metre in air	

9

					Why.	
			21		A. Day	
(d)	Use words from the	ne list to complet	e the sentences	s below.	Jag.	dh
	electrons	energy	nuclear	nuclei	radioactive	10
	In a	re	eactor,		of elements	
	like uranium are s	split. Small quant	ities of uranium	can release la	rge amounts of	
		······································			[3	3]
(e)	Generators are us	sed to produce e	lectricity in powe	er stations.		
	Explain how energy station.	gy from a name	d fossil fuel is tr	ansferred to th	e generator in a powe	er
	Station.					
					[3	3]

Fig. 10.1

- (a) (i) On Fig. 10.1, use a label line and the letter **A** to indicate the part of the plant that absorbs water. [1]
 - (ii) On Fig. 10.1, use a label line and the letter **L** to indicate the part of the plant from which most water vapour is lost to the air. [1]
 - (iii) Name the vessels through which water travels up the plant.

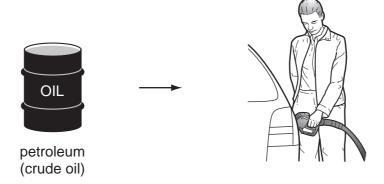
[1]

AMANA BABACAN For iner's

(b)	Trees lose large amounts of water vapour to the air. This can help to produce
	too many trees are cut down, rainfall may decrease.

	my my	
	23	1
	es lose large amounts of water vapour to the air. This can help to produce many trees are cut down, rainfall may decrease.	Can
	es lose large amounts of water vapour to the air. This can help to produce many trees are cut down, rainfall may decrease. Clain how trees can also help to reduce the following harmful effects on vironment.	the
(i)	soil erosion	
		[2]
(ii)	global warming	
		[2]

V-0	or
-	iner's
*	
~	


- www.PapaCambridge.com 11 Carbon occurs naturally as the free element and also combined in an extremely number of different compounds.
 - (a) An isotope of carbon has a nucleon (mass) number of 14.

State the numbers of protons, neutrons and electrons in one atom of this isoto	ре.
--	-----

protons	
neutrons	
electrons	

[3]

(b) Petroleum (crude oil) is a raw material which contains many different carbon compounds. Some of these compounds are separated from petroleum to produce gasoline which is used as a fuel.

(i)	State two	ways	in which	the	properties	of	petroleum	differ	from	the	properties	of
	gasoline.											

1	
2	[2]

(ii) The extraction of gasoline from petroleum includes the process of fractional distillation.

Explain whether fractional distillation involves physical or chemical changes.

type of chan	ge
explanation	
	ra:

www.papaCambridge.com

(iii) Fig. 11.1 shows a typical molecule in gasoline.

Fig. 11.1

		119.11.1
		Explain whether this is an example of a saturated or an unsaturated molecule.
		[1]
(iv)	A small amount of the compound made of the molecules in Fig. 11.1 was shaken with an orange-coloured solution of bromine.
		State and explain briefly what effect, if any, this has on the colour of the bromine solution.
		[2]
(c)		ne car manufacturers are researching the use of alternative fuels to replace oline.
	One	e possible alternative fuel is hydrogen gas, H ₂ .
	Hyc	drogen burns in air according to the equation
		$2H_2 + O_2 \longrightarrow 2H_2O$
		plain why air pollution caused by car engines would be greatly reduced if hydrogen ld be used as the fuel instead of gasoline.
		101

www.PapaCambridge.com 12 (a) Complete Table 12.1 to show the circuit symbol for each of the named component

Table 12.1

component	symbol
ammeter	
fuse	
variable resistor	

[3]

(b) Fig. 12.1 shows an electrical circuit for a torch (flashlight).

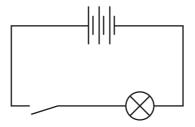


Fig. 12.1

(i)	How many cells are fitted in the torch?	[1]
(ii)	A voltmeter is used to check the voltage across the light bulb.	
	Draw the symbol for the voltmeter in the correct position on the circuit.	[1]

(c) A single ray of light from a torch is shone onto a mirror as shown in Fig. 12.2.

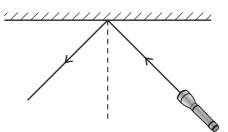


Fig. 12.2

- (i) On Fig. 12.2 label the angle of incidence and angle of reflection. [1]
- (ii) The angle of incidence = 45°.

Write down the value of the angle of reflection. [1]

(d) A ray of white light from the torch is now passed into a glass prism.

This is shown in Fig. 12.3.

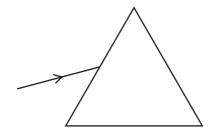


Fig. 12.3

Complete the diagram to show what happens to the light as it passes through and out of the prism. [2]

12.2. For iner's

The Periodic Table of the Elements DATA SHEET

	0	4 He lium	20 N eon	40 Ar Argon	84 Kr ypton	131 Xe Xenon	Rn Radon		175 Lu Lutetium
		- ×	9	8	36	54	98		
	IIΛ		19 Fluorine	35.5 C1 Chlorine	80 Br Bromine	127 	At Astatine 85		73 Yb
	IN			32 S Sulfur 16	79 Selenium	128 Te Tellurium	Po Polonium 84		169 Tm
	Λ		14 X Nitrogen 7	31 Phosphorus	75 AS Arsenic 33	122 Sb Antimony 51	209 Bi Bismuth		167 Er Erbium
	Ν		12 C Carbon	28 Si icon	73 Ge Germanium	Sn Tin 50	207 Pb Lead 82		165 Ho
	Ш		11 Boron 5	27 A1 Aluminium	70 Ga Gallium	115 n Indium 49	204 T t Thallium		162 Dy Dysprosium
					65 Zn Zinc	112 Cd Cadmium 48	201 Hg Mercury 80		159 Tb
					64 Copper	108 Ag Silver 47	197 Au Gold		157 Gd Gadolinium
Group					59 Nickel	106 Pd Palladium 46	195 Pt Platinum 78		152 Eu Europium
Gre					59 Co Cobalt	103 Rh Rhodium 45	192 r ridium		Samarium
		1 T Hydrogen			56 Fe Iron	Ruthenium	190 OS Osmium 76		Pm
					Mn Manganese	Tc Technetium 43	186 Re Rhenium 75		Neodymium
					Chromium	96 Mo Molybdenum 42	184 W Tungsten 74		Praseodymium
					51 V Vanadium 23	93 Niobium 41	181 Ta Tantalum		Cerium
					48 T	91 Zr Zirconium 40	178 Hf Hafnium * 72		
					Sc Scandium	89 ×	139 La Lanthanum 57 *	AC Actinium 1	series eries
	II		9 Be Beryllium	24 Mg Magnesium	40 Ca Calcium 20	Sr Strontium	137 Ba Barium 56	226 Ra Radium 88	*58-71 Lanthanoid series 190-103 Actinoid series
	_		7 Li Lithium	23 Na Sodium	39 K Potassium 19	Rb Rubidium	133 CS Caesium 55	Francium 87	*58-71 Lε 190-103 A
			•					•	

www.papaCambridge.com F Hallium Mo Erbium Fm **H**olmium Es Californium 98 2 ರ Terbium ਲ **Currium** o Am П Plutonium SB Pu å o Z Ра Ļ Cerium 232 **Th** 28 90 b = proton (atomic) number a = relative atomic mass X = atomic symbol

Key

2

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.