

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

didie con

*	
5	
4	
∞	
И	
5	
4	
7	
5	
9	
5	
*	

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

CO-ORDINATED SCIENCES

0654/31

Paper 3 (Extended)

October/November 2012

2 hours

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in. Write in dark blue or black pen.

You may use a soft pencil for any diagrams, graphs, tables or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO **NOT** WRITE IN ANY BARCODES.

Answer all questions.

A copy of the Periodic Table is printed on page 32.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

For Exam	iner's Use
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
Total	

This document consists of 29 printed pages and 3 blank pages.

1 (a) Complete Table 1.1 by choosing one of the words from the list to match statement.

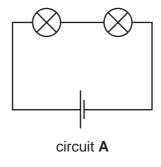

		2		MM. Pap	
Complete Table tatement.	1.1 by choosin	g one of the w	ords from the lis	st to match	For iner's
ammeter	ampere	circuit	coulomb	electron	The Contract of the Contract o
ohm	relay	volt	voltmeter	watt	OW
		Table 4.4			

Table 1.1

statement	word
a complete loop of conductors	
the unit of electrical charge	
an instrument that measures potential difference	
a device used in switching on circuits	

[2]

(b) Fig. 1.1 shows two circuits **A** and **B**. All the lamps and both cells are the same.

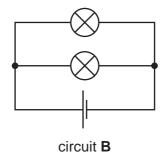


Fig. 1.1

(i) One lamp is unscrewed from circuit A.

State what happens to the other lamp.

Explain your answer.

•	-			
		 	 	[1]

(ii)	Explain why lights in a house are connected in parallel and not in series.		
(11)	Explain why lights in a house are connected in parallel and not in series.	and	For iner's
			Togo
]	COM
		[2]	
iii)	The resistance of each lamp is 1.2Ω .		
	Calculate the combined resistance of the two lamps in circuit B .		
	State the formula that you use and show your working.		
	formula used		
	working		
		[3]	

4

BLANK PAGE

2

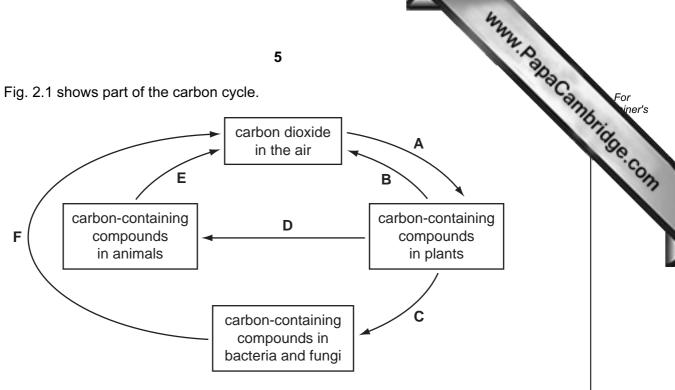


Fig. 2.1

(i)	State the letter or letters, A, B, C, D, E or F, that represent	
	photosynthesis,	
	respiration.	[2]
(ii)	Name one carbon-containing compound in plants.	
		[1]
(iii)	State the approximate percentage of carbon dioxide in the air.	

(b) Earthworms play an important part in the carbon cycle. They are decomposers. Describe the role of decomposers in the carbon cycle.

(c) In Florida, USA, some people collect earthworms by vibrating the soil.

A wooden post is pushed into the ground, and then a heavy object is pulled across the top of the post to make it vibrate. The vibrations travel through the soil.

www.PapaCambridge.com Earthworms respond to the vibrations by crawling out of their burrows onto the soil surface, where they can be caught.

A student investigated the effect of different frequencies of vibrations on the numbers of earthworms that emerged from the soil. Fig. 2.2 shows his results.

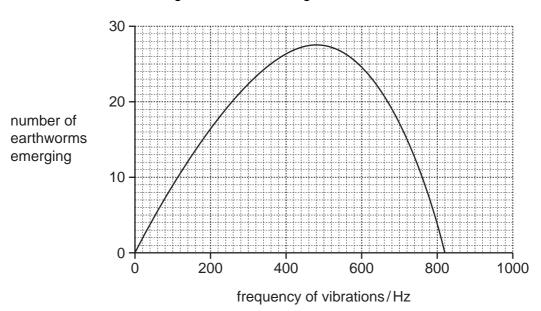


Fig. 2.2

(i)	Describe the effect of different frequencies of vibrations on the number earthworms emerging.
	[2]
(ii)	Moles are predators that live underground and eat earthworms. When moles burrow through the ground, they produce vibrations of around 500 Hz.
	The response of earthworms to vibrations is controlled by their genes.
	Suggest how natural selection may have caused the response of earthworms to vibrations to evolve.
	[4]

For iner's

(a) Fig. 3.1 shows how a digital pH meter is used to measure the pH of some liquids. 3

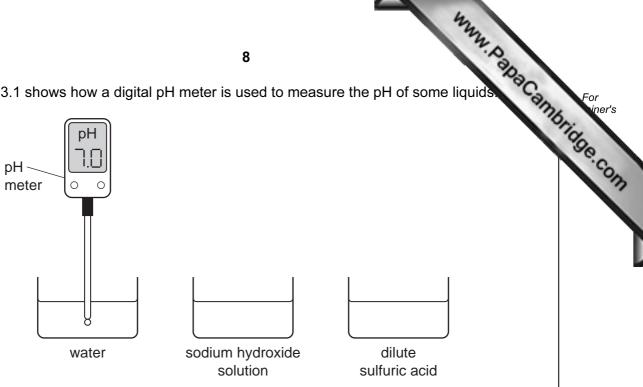


Fig. 3.1

(i) Complete Table 3.1 by suggesting suitable pH values for the different liquids.

Table 3.1

liquid	рН
water	7.0
sodium hydroxide solution	
dilute sulfuric acid	

[1]

(ii)	Suggest one advantage of using a digital pH meter rather than a piece of litr paper to assess the acidity of an aqueous solution.	nus
		[1]

Annon For iner's

(iii) Dilute acids are aqueous solutions that contain dissolved ions.

Table 3.2 shows the names of the ions in two common acids.

Table 3.2

name of dilute acid	names of dissolved ions
hydrochloric acid	hydrogen ions and chloride ions
sulfuric acid	hydrogen ions and sulfate ions

A student is given an unlabelled beaker which is known to contain either dilute hydrochloric acid or dilute sulfuric acid.

contain	cal test that a	a student cou	uld use to 1	find out which	ch acid the be	eaker
	 					[2]

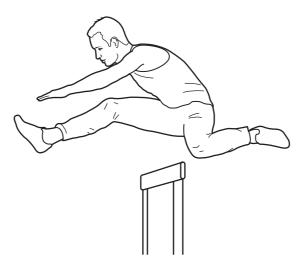
- **(b)** When a reactive metal is added to a dilute acid, the metal reacts and dissolves and hydrogen gas is given off.
 - (i) When magnesium reacts with dilute hydrochloric acid, magnesium **atoms** are oxidised by hydrogen **ions**.

The balanced ionic equation for this redox reaction is shown below.

$$Mg(s) + 2H^{+}(aq) \longrightarrow Mg^{2+}(aq) + H_{2}(g)$$

Explain, in terms of the transfer of electrons, why this reaction is described as redox.

 [2]


(ii) Unreactive metals do not react in dilute acid.

A student is given a mixture of powdered magnesium and powdered copper.

www.PapaCambridge.com Describe and explain how the student could use dilute hydrochloric acid and usual laboratory apparatus to obtain a sample of copper from this mixture.

mixture of powdered — magnesium and powdered copper	dilute hydrochloric acid	;
	 	3]

(a) An athlete of mass 60 kg jumps 1.3 metres vertically.

Calculate the work done by the athlete to achieve this height.

State the formula that you use and show your working. The gravitational field strength

	of the Earth is 10 N/kg.	9
	formula used	
	working	
		[3]
(b)	Using your answer to part (a), state the gain in potential energy of the athlete when jumps 1.3 metres.	he
		[1]
(c)	The work done in jumping vertically was completed in 0.5s.	
	Calculate the power developed	

Calculate the power developed.

State the formula that you use and show your working.

formula used

working

[2]

BLANK PAGE

Fig. 5.1 shows apparatus that can be used to measure the rate of respiration of germ 5 seeds.

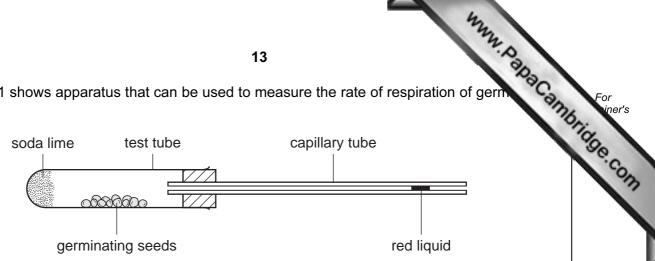


Fig. 5.1

The soda lime absorbs carbon dioxide from the air inside the apparatus.

- (a) As the seeds respire, they use oxygen. This reduces the volume of gas inside the apparatus. The faster they respire, the faster the red liquid moves towards the left.
 - (i) Write the balanced equation for aerobic respiration. [2] (ii) Use the equation to explain why the liquid would not move if there was no soda lime in the apparatus.

of temperature on the

(b) An experiment was carried out to investigate the effect of temperature on the respiration of the germinating seeds.

Four sets of the apparatus shown in Fig. 5.1 were set up and labelled **A**, **B**, **C** and **D**. Each set of apparatus contained either germinating or dead seeds.

The distance moved by the red liquid in five minutes was measured for each set.

The results are shown in Table 5.1.

Table 5.1

set	contents	temperature/°C	distance moved by red liquid in 5 minutes/mm
Α	germinating seeds	0	3
В	germinating seeds	10	6
С	germinating seeds	20	12
D	dead seeds	20	0

(1)	Explain why it was important to include set D in the experiment.	
		[1]
(ii)	Suggest why the liquid may have moved very slightly in set D .	
		[1]
(iii)	With reference to Table 5.1, describe the effect of temperature on the rate respiration of germinating seeds.	of
		 [2]

	15 MANN, P.	\
(iv)	Predict and explain the results you would expect if the apparatus was set germinating seeds at a temperature of 60 °C.	an
	predicted results	
	explanation	.,
	[2	 2]

www.PapaCambridge.com Some types of firework are made by filling a cardboard tube with firework mixture. Printing is made from several solid substances which have been powdered and mixture is made from several solid substances which have been powdered and mixture. 6 together.

Fig. 6.1 shows a typical firework.

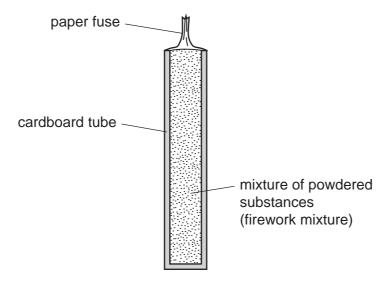


Fig. 6.1

When the paper fuse is lit, exothermic chemical reactions occur inside the firework.

(a)	Exp	lain, in terms of rate of reaction, why firework mixture is a powder.	
		[2	·· <u>?]</u>
(b)	Sor	ne firework mixtures contain aluminium which is oxidised to produce aluminiur de.	n
	Wh	en aluminium is oxidised, aluminium atoms are converted into aluminium ions.	
	(i)	The electron configuration of an aluminium atom is 2 , 8 , 3 .	
		Explain why the electrical charge of an aluminium ion is +3.	
		[2	2]

		the transfer of the transfer o
		17
	(ii)	A student suggested the symbolic equation below for the formation of alumentary oxide. $2Al + 3O_2 \longrightarrow Al_2O_3$ State and explain whether or not this equation is balanced.
		$2Al + 3O_2 \longrightarrow Al_2O_3$
		State and explain whether or not this equation is balanced.
		[2]
(c)		e firework mixture contained in the firework in Fig. 6.1 contains the compound assium perchlorate, $KC1O_4$.
		en potassium perchlorate is heated, a colourless gas is given off which re-lights a wing splint.
	Sug	ggest why the firework mixture needs to contain potassium perchlorate.

(a)	Sta	te which type of electromagnetic wave	, Co
	(i)	can be detected by the human eye,	
	(ii)	is used in a remote control for a television,	[1]
	(iii)	is strongly absorbed by the water in cells.	[1]
(b)		ree types of nuclear radiation are alpha, be ntified by its behaviour in electric and magne	
		scribe how you could identify alpha, beta ar an electric field.	nd gamma radiations by their deflections
	Exp	olain your answer. You may use a diagram to	o help your explanation.
			[5]

		www.	
		19	
(c)		19 a nuclear power station, nuclear fuel such as uranium releases energy cess of nuclear fission.	For iner's
	(i)	State what happens to the uranium atoms.	age.C.
			1] On
	(ii)	At a nuclear power station, technicians work close to radioactive sources.	
		State one way in which these workers could be harmed by radiation emitted from radioactive sources.	n
		[1]
	(iii)	State two ways in which these workers could be protected from the radiation.	
		1	
		2	וי

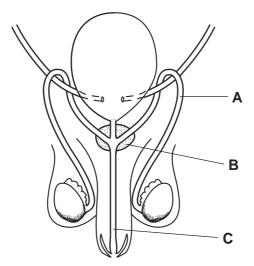


Fig. 8.1

(a)	(i)	State the functions of parts A , B and C .
		A
		В
		C [3]
	(ii)	On Fig. 8.1, use a label line and the letter S to indicate where male gametes are made.
(b)		scribe three ways in which human male gametes differ from human female netes.
	1.	
	2.	
	3.	[3]
(c)	Ма	le gametes and female gametes have a haploid nucleus.
	Exp	plain why it is important that gametes have a haploid nucleus.
		[2]

	the state of the s	
	21	1
(d)	HIV is the virus that causes AIDS. HIV can be passed from one person to a during sexual intercourse.	Cann
	Outline how HIV affects the immune system of a person with HIV/AIDS.	
		[2]

BLANK PAGE

9 In 1774 the chemist Carl Scheele reacted concentrated hydrochloric acid with many dioxide. One of the products of this reaction was a pale green gas which Scheele belied to be a compound containing oxygen.

For iner's

All attempts by Scheele and other chemists to decompose this green gas were unsuccessful. In 1810 the green gas was named chlorine.

		[2]
(a)	Explain which information in the passage above suggests that chlorine is an element	

(b) Chlorine is produced in the chemical industry by electrolysis.

A simplified diagram of one type of electrolysis cell used to produce chlorine is shown in Fig. 9.1.

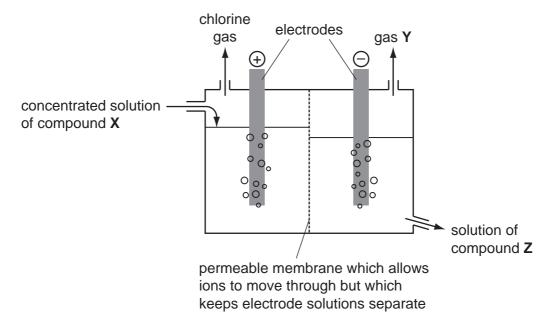


Fig. 9.1

(i) Name substances X, Y and Z in Fig. 9.1.

X	
Y	
Z	

[3]

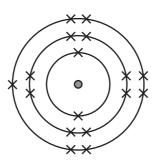


Fig. 9.2

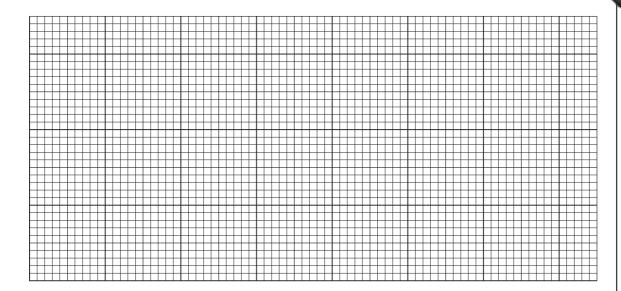
In chlorine gas, the atoms form molecules which have the formula, Cl₂.

Draw a diagram to show how the **outer** electrons are arranged in a molecule of chlorine.

[2]

www.PapaCambridge.com

(c) A student plans to produce some chlorine gas by repeating the reaction used by Scheele. She researches the balanced symbolic equation for the reaction and finds that it is


$$4HCl(aq) + MnO_2(s) \longrightarrow MnCl_2(aq) + 2H_2O(l) + Cl_2(g).$$

The student decides to react 1.74g of manganese dioxide with excess hydrochloric acid.

(i) Calculate the number of moles of manganese dioxide in 1.74g.Show your working.

(ii)	Calculate the volume of chlorine gas, measured at room temperature pressure, which the student might expect to be produced in her experiment.	10
	The volume of one mole of chlorine, measured at room temperature and pressure is 24 dm ³ .	∋,
	Show your working.	
	re	.,

www.PapaCambridge.com 10 (a) On the grid below, draw a wave with an amplitude of 2 cm and a wavelength of 4 On your diagram, clearly label the amplitude and the wavelength.

(b) (i) Two sound waves, A and B, have the same frequency. A has a greater amplitude than **B**. What difference would you hear? [1] (ii) Two sound waves, X and Y, have the same amplitude but X has a greater frequency than Y. What difference would you hear?

[3]

www.PapaCambridge.com (iii) The speed of sound was calculated for sound passing through a solid, a gas and a vacuum.

The values recorded were

 $0 \, \text{m/s}$ 330 m/s

1500 m/s 5000 m/s.

Write the values in the correct boxes in Table 10.1.

Table 10.1

	speed of sound m/s
vacuum	
solid	
liquid	
gas	

(iv) Sound travels through the air by a series of compressions and rarefactions.

Explain what is meant by compressions and rarefactions. You may use a diagram to help your explanation.

 	 	 	 	 [2]

[2]

	28	
;)	Energy travels to the Earth from the Sun.	
	State whether this transfer of energy is by conduction, convection or radiation.	
	Explain your answer.	1
		>
		1
	[2]	

(d) Many bush fires are caused by pieces of glass that have been carelessly thrown away.

Fig. 10.1 shows parallel rays of light passing through a piece of glass. The piece of glass acts as a lens and focuses the light on the ground.

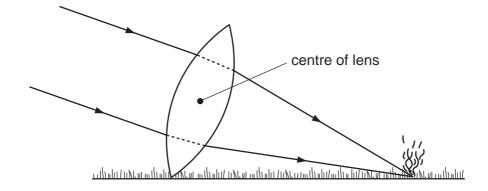
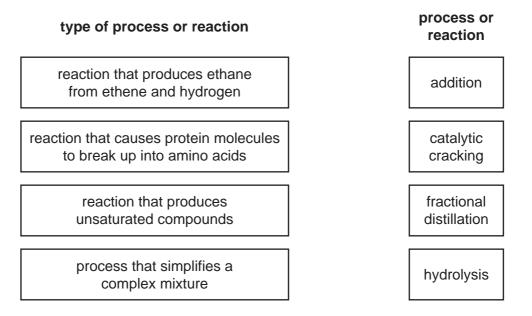


Fig. 10.1


On Fig. 10.1, use the letter P to label the principal focus of the piece of glass.	[1]
Measure the focal length of the piece of glass in Fig. 10.1.	
mmm	[1]
The glass acting as a lens produces a real image of the Sun.	
Explain what is meant by the term real image.	
	Measure the focal length of the piece of glass in Fig. 10.1. The glass acting as a lens produces a real image of the Sun.

	the state of the s
	mans require a wide range of nutrients to provide a balanced diet. List two groups of organic substances that humans require in their diet. 1
Hui	mans require a wide range of nutrients to provide a balanced diet.
(a)	List two groups of organic substances that humans require in their diet.
	1
	2[2]
(b)	Outline the symptoms that a person may develop if their diet is deficient in
	(i) vitamin D,
	[1]
	(ii) iron.
	[1]
(c)	Describe the use of microorganisms in the manufacture of yoghurt.
	[3]

12 (a) (i) Name the two elements which are combined together in most of the com found in petroleum (crude oil).

www.papaCambridge.com 2

(ii) Draw four straight lines to connect each process or reaction in the left hand column with its meaning in the right hand column.

(b) Fig. 12.1 shows apparatus that a student uses to investigate what happens when gaseous decane, C₁₀H₂₂, is heated in the presence of a catalyst.

The catalyst is made of small pieces of aluminium oxide which are heated strongly.

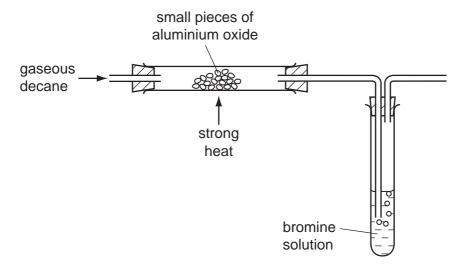


Fig. 12.1

When the gaseous decane passes through the heated catalyst, the solution of bromine rapidly changes colour from orange to colourless.

[2]

(i)	Explain why this observation shows that decane has undergone a charaction.
	[3]
(ii)	Explain why the products of the reaction do not include any aluminium compounds.
	[1]
(iii)	Suggest why the catalyst needs to be heated.
	[1]
	hen ethene, C_2H_4 , is heated and pressurised in the presence of a catalyst, it is inverted into a white compound which becomes solid when it cools.
(i)	Complete the diagram below to show a small section of one of the molecules in the white solid.
	c
	[2]
(ii)	Suggest why it is not possible to state an exact value of the relative molecular mass of the molecules in the white solid.
	[1]

The Periodic Table of the Elements DATA SHEET

								Gre	Group								
_	=											≡	<u>\</u>	>	IN	IIΛ	0
							T Hydrogen										4 He Helium
7 Lithium	Be Beryllium											11 Boron 5	12 Carbon	14 X Nitrogen 7	16 Oxygen	19 T Fluorine 9	20 Ne Neon
23 Na Sodium	Mg Magnesium											27 A1 Aluminium 13	28 Si Silicon	31 P Phosphorus 15	32 S Sulfur	35.5 C1 Chlorine	40 Ar Argon
39 K Potassium	40 Ca m Calcium	Scandium	48 Ti Titanium 22	51 V Vanadium 23	CC Chromium 24	Mn Manganese	56 Fe Iron	59 Co Cobalt	59 Nickel	64 Copper 29	65 Zn Zinc 30	70 Ga Gallium 31	73 Ge Germanium 32	75 AS Arsenic 33	Selenium	80 Br Bromine 35	84 Kr ypton 36
Rb Rubidium	Sr Strontium	89 Y Yttrium	91 Zroonium 40	93 Nb Niobium 41	96 Mo Molybdenum 42	Tc Technetium 43	Ru Ruthenium 44	103 Rhodium 45	106 Pd Palladium 46	108 Ag Silver 47	Cadmium 48	115 n Indium	119 Sn Tin 50	Sb Antimony 51	128 Te Tellurium 52	127 lodine 53	131 Xe Xenon 54
CS Caesium 55	137 Ba n Barium 56	139 La Lanthanum 57 *	178 Ha fnium * 72	181 Ta Tantalum 73	184 W Tungsten 74	186 Re Rhenium 75	190 OS Osmium 76	192 r Iridium 77	195 Pt Platinum 78	197 Au Gold	201 Hg Mercury 80	204 T t Thallium 81	207 Pb Lead 82	209 Bi Bismuth	Po Polonium 84	At Astatine 85	Radon 86
Francium 87	226 Ra n Radium 88	227 AC Actinium 89															
*58-71 190-10	*58-71 Lanthanoid series 190-103 Actinoid series	d series series	1	140 Ce	Pr Praseodymium	Neodymium	Pm Promethium	Samarium	152 Eu Europium	157 Gd Gadolinium	159 Tb	Dy Dysprosium	165 Ho Holmium	167 Er	169 Tm Thulium	Yb Yterbium	175 Lu Lutetium

www.papaCambridge.com Flulium Mo Erbium Fm **4** Holmium Es Californium 98 ٥ ರ **Terbium** ਲ gq **Currium Europium** Am **Sa**marium Plutonium Pu Š Ра Ρ. **Serium** 232 **Th** 28 90 b = proton (atomic) number

a = relative atomic mass X = atomic symbol

Key

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.