

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

L EXAMINATIONS Jucation

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

CO-ORDINATED SCIENCES

0654/21

Paper 2 (Core)

May/June 2013

2 hours

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use a pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO **NOT** WRITE IN ANY BARCODES.

Answer all questions.

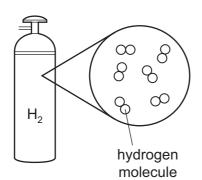
Electronic calculators may be used.

You may lose marks if you do not show your working or if you do not use appropriate units.

A copy of the Periodic Table is printed on page 32.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.



www.PapaCambridge.com 1 (a) Table 1.1 shows the numbers of protons, neutrons and electrons in four atoms,

Table 1.1

atom	protons	neutrons	electrons
Α	1	0	1
В	8	8	8
С	1	1	1
D	15	16	15

(1)	number) of 16.	ıss
	atom	
	explanation	
		[2]
(ii)	Explain which pair of atoms chosen from A, B, C and D are isotopes of hydrogen	۱.
	atom and atom	
	explanation	
		[2]
(iii)	Use the information in Table 1.1 to explain why atoms are electrically neutral.	
		[2]

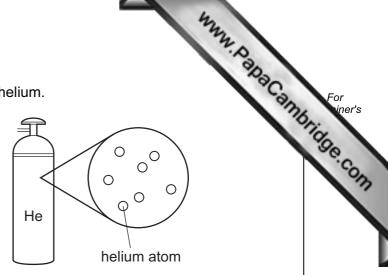


Fig. 1.1

(i)	Hydrogen is usually described as a non-metal.	
	Name the type of chemical bond joining the atoms in a hydrogen molecule.	
		[1]
(ii)	Suggest why helium exists as uncombined atoms.	
		[1]
(iii)	State one use of helium.	
		[1]

www.PapaCambridge.com

(c) Hydrogen is often included in the reactivity series of metals.

Use the idea of reactivity to explain the observations shown in Fig. 1.2.

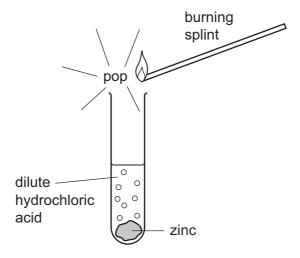


Fig. 1.2

 	 .
	[2]

2 (a) A fishing boat is floating on the sea.

A fisherman drops a heavy anchor from the boat. The anchor accelerates as it fan through the water.

Name the downward force which makes the anchor accelerate.

[1]	l
 -	-	٠

(b) A fishing boat uses echo sounding to detect a shoal of fish.

This is shown in Fig. 2.1.

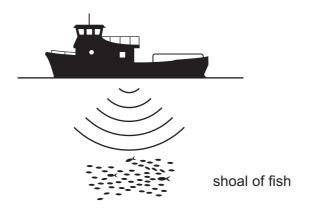


Fig. 2.1

Short pulses of sound are sent out from the boat. The echo from the shoal of fish is detected by a receiver on the boat 0.2 seconds later.

Sound waves travel through water at a speed of 1600 m/s.

Calculate the distance of the shoal of fish below the boat.

State the formula that you use and show your working.

formula

working

m	[2
m	[2
	-

Water waves are a renewable energy resource.
Outline two advantages of using renewable energy resources.
1
2
[2]
Fig. 2.2 shows how water waves can be used to produce electricity.
water movement causes air to move in and out of the air chamber waves air chamber waves make water rise and fall in air chamber
Fig. 2.2
Using the information in Fig. 2.2, describe two of the energy transfers that are involved in changing the kinetic energy of the waves into electrical energy.

(d) Fig. 2.3 shows an iceberg floating in the sea.

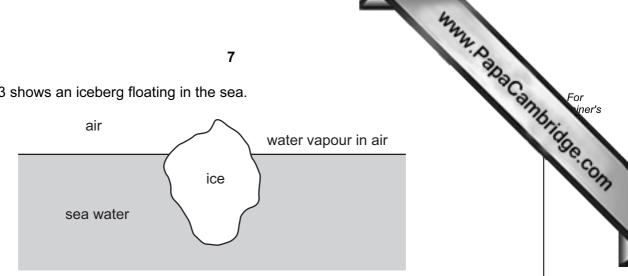


Fig. 2.3

(i)	Which material named on Fig. 2.3 best fits the statement below?
	"The particles are able to move, are randomly arranged and are closely packed."
	[1]
(ii)	Name the process by which water molecules in the sea become water molecules in the air.
	[1]
(iii)	Name the process by which water changes to ice.
	[1]

3 Fig. 3.1 shows an insect-pollinated flower cut in half.

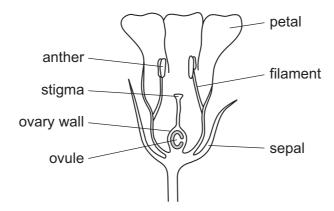


Fig. 3.1

(a) Draw lines to link each structure to its function.

 structure
 function

 petal
 protects the flower when it is a bud

 anther
 receives pollen

 stigma
 produces pollen

 sepal
 attracts insects to the flower

[3]

www.PapaCambridge.com

(b) After pollination, the ovule inside the ovary may be fertilised. The ovary develops into a fruit, and the ovule develops into a seed.

List three factors that all seeds need for germination.

1	
2	
3	

[3]

(c)	Plants use flowers for sexual reproduction.
	State two ways in which asexual reproduction differs from sexual reproduction.
	1
	2
	[2]

For

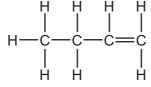
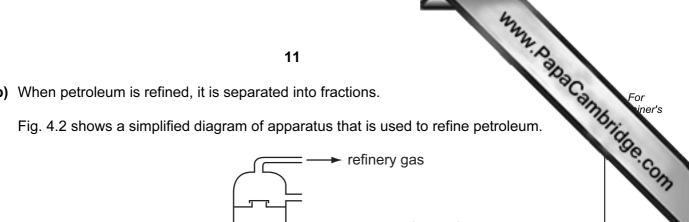
- 4 Petroleum (crude oil) and rock salt occur naturally in the Earth's crust.
 - (a) Petroleum is a mixture that contains thousands of different compounds. Many of the compounds are hydrocarbons known as alkanes.
 - (i) Draw the structure of the alkane molecule that contains two carbon atoms. Use short lines to represent covalent bonds.

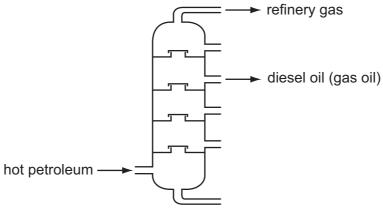
[2]

(ii) Name the alkane that is the main constituent of natural gas.

[1]

(iii) Fig. 4.1 shows the structure of a hydrocarbon molecule.


Fig. 4.1

Describe what is observed when this hydrocarbon is shaken with a solution of bromine.

© UCLES 2013

(b) When petroleum is refined, it is separated into fractions.

		Fig. 4.2
	(i)	State the full name of the process shown in Fig. 4.2.
		[1]
	(ii)	Refinery gas and diesel oil are used as fuels.
		Name the ${\bf two}$ compounds that are formed when alkanes in these fuels undergo complete combustion.
		and[2]
(c)		ck salt contains mainly sodium chloride which is a compound of the alkali metal, ium, and the halogen, chlorine.
	(i)	Explain why the uncombined element sodium is not found in the Earth's crust.
		[1]
	(ii)	When a piece of sodium is placed into a container of chlorine gas, sodium and chlorine atoms are changed into electrically charged atoms known as ions.
		Describe briefly what happens when sodium atoms and chlorine atoms are changed into ions.
		[2]

(iii)	Explain briefly why the sodium ions and chloride ions bond together in schloride.		or iner's
		[2]	

5 Milk is a liquid produced by cows and other mammals, on which they feed their young

www.PapaCambridge.com Table 5.1 shows the mass of some of the substances in 100g samples of milk from two mammals.

Table 5.1

substance	cow's milk	water-buffalo's milk
protein/g	3.2	4.5
fat/g	3.9	8.0
carbohydrate/g	4.8	4.9
calcium/mg	120	195

(a)	Which substance shown in Table 5.1 is present in the samples of milk in the small quantity?	est
		[1]
(b)	Suggest which substance, not shown in Table 5.1, is present in the samples of milk the largest quantity.	in
		[1]
(c)	Explain why both cow's milk and water-buffalo's milk produce a violet colour wh tested with biuret solution.	en
		[1]
(d)	Predict the colour you would see if you added iodine solution to cow's milk.	
	Explain your answer.	
	colour	
	explanation	[2]
(e)	List the components of milk, shown in Table 5.1, that provide energy.	
		[1]

(f)	Explain one way in which drinking water-buffalo's milk might be better for a penealth than drinking cow's milk.	For iner's
		Se.co.
	[2]	
(g)	State and explain which substance in Table 5.1 does not need to be digested in the human alimentary canal.	
	[2]	

www.PapaCambridge.com (a) In a store, two workers are lifting 5 kg bags of flour onto the shelves. There a shelves, 0.5 m apart. The lowest shelf is 0.5 m from the floor. 6

Fig. 6.1 shows the two workers.

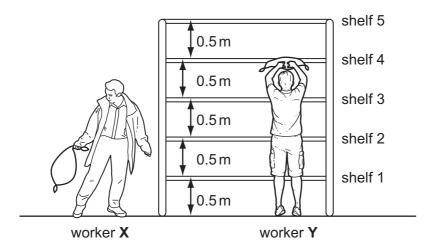


Fig. 6.1

(i)	Describe the energy change when a bag of flour falls off the shelf.	
	energy is changed intoenergy.	[2]
(ii)	What happens to the energy of the flour as it hits the floor?	
		[1]
(iii)	Worker X lifts a bag of flour onto shelf 2. Worker Y lifts a bag of flour onto shelf	4.
	Which worker has done more work?	
	Explain your answer.	
		[1]
(iv)	State the unit in which work and energy are measured.	
		[1]

	2
(v)	Each 5 kg bag of flour has a volume of 5500 cm ³ .
	Calculate the average density of the bag of flour. State your answer in g/cm ³ .
	State the formula that you use and show your working.
	formula
	working
	g/cm ³ [2]

www.PapaCambridge.com (b) Three boys, A, B and C, walk together from their school to a store. They stay store for a few minutes and then return to school.

[2]

m

When they leave the store,

- one boy walks back to school at a steady pace,
- one boy walks back to school at a slower steady pace,
- one boy slows down gradually as he walks back to school.

The graph in Fig. 6.2 shows how their speeds vary with time.

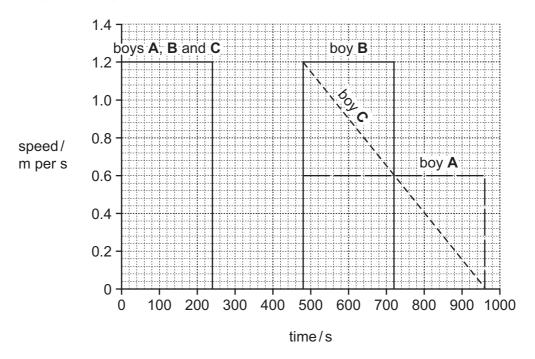


Fig. 6.2

(i) Calculate the distance of the store from the school. Show your working.

(ii)	For how many seconds do the boys stay in the stor	e?	
		s	[1]
(iii)	Which boy slowed down on his way back to school	?	
	State a reason for your answer.		
	boybecause		
			[2]

7	The me	etal vanadium is mixed with iron and carbon to make vanadium steel.
	(a) (i)	State the general name for mixtures containing metals.
	(ii)	Vanadium steel is used to make tools such as spanners (wrenches) and turbine
	, ,	blades in jet engines.
		VANADIUM STEEL
		Suggest one advantage of vanadium steel compared to mild steel.
		[1]
	(iii)	Vanadium metal may be obtained by reacting vanadium oxide with magnesium.
		The equation for the reaction is
		vanadium oxide + magnesium — → vanadium + magnesium oxide
		Explain which substance is reduced in this reaction.
		substance
		explanation
		[2]
	(iv)	Vanadium is a transition metal and magnesium is in Group 2 of the Periodic Table.
		Suggest two properties of vanadium which are typical of transition metals and which are not possessed by magnesium.
		1
		2
		[2]

(b) Vanadium oxide is an important catalyst which is used in making sulfuric acid chemical industry.

www.PapaCambridge.com Fig. 7.1 shows a simplified diagram of the reaction vessel which contains vanadium oxide.

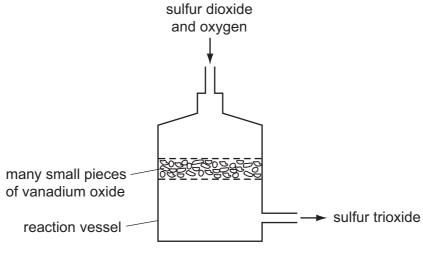


Fig. 7.1

In this reaction vessel, sulfur dioxide and oxygen react together on the surface of vanadium oxide.

(i)	State what is meant by the term <i>catalyst</i> .
	[2]
(ii)	Use the information in Fig. 7.1 to suggest the word chemical equation for the reaction between sulfur dioxide and oxygen.
	[1]
iii)	Explain why it is very important that none of the gas mixture involved in making sulfuric acid escapes into the air inside the factory.
	[2]

8 Fig. 8.1 shows some organisms that live in and around a pond.

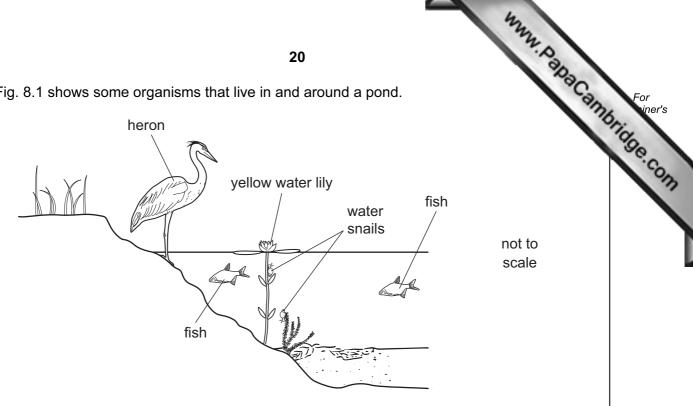


Fig. 8.1

(a) Herons eat fish. Water snails eat water plants, such as yellow water lilies.

Tick **all** the boxes that correctly describe each organism.

	producer	consumer	carnivore	herbivore
heron				
water snail				
yellow water lily				

[3]

- (b) The addition of a harmful substance to the environment is called pollution. Two examples of pollution caused by human activities are
 - untreated sewage entering a pond,
 - the release of methane into the atmosphere.

	ro
(i)	Explain why untreated sewage entering a pond may cause fish to die.

(11)	waste material in rubbish dumps.
	Describe how air pollution by methane can harm the environment.
	[7]
	[2]

Se.Co

9 (a) Complete the following sentences choosing from the terms below.

Each term may be used once, more than once or not at all.

current	parallel	pote	ential difference
resis	tance	series	watt

A flow of electric charge is called	d a	
An ammeter is used to measure		
Α	drives a current between two points in a circuit.	[3

(b) A student investigated how a change in potential difference across a lamp affected the current flowing through the lamp.

She used wires to connect the components shown in Fig. 9.1 to make a circuit.

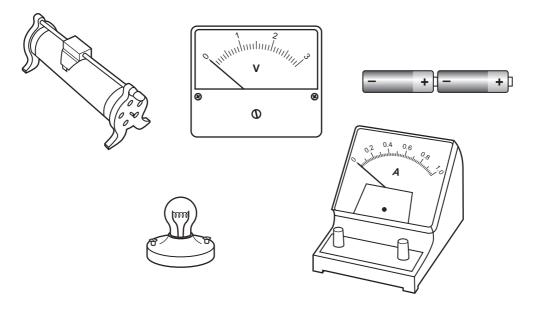


Fig. 9.1

(i) Using the correct circuit symbols, draw a diagram to show the circuit she used.

www.PapaCambridge.com

(ii) The student measured the current passing through a wire when a podifference was applied across it.

For iner's

Calculate the resistance of the wire when a potential difference of 0.3V is applied and the current measured is 0.5A.

State the formula that you use and show your working.

formula

working

Ω [2]

(c) Electricity is often transmitted through overhead power cables hung from pylons. If these cables are put up on a hot summer day, they are hung loosely from the pylons as shown in Fig. 9.2.

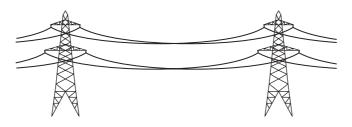


Fig. 9.2

Suggest why the cables are hung loosely.

www.PapaCambridge.com **10** (a) Sodium hydrogencarbonate, NaHCO₃, is a white solid compound. State the number of different elements that are shown combined in the formula NaHCO₃.

Γ1
 г.

(b) Fig. 10.1 shows apparatus a student used to investigate the reaction between sodium hydrogencarbonate and dilute hydrochloric acid.

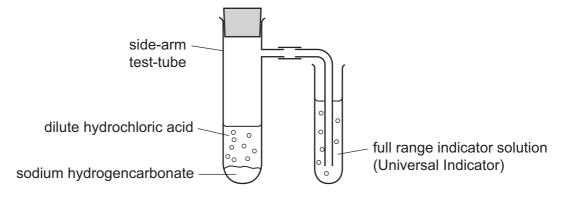


Fig. 10.1

The student observed that the indicator changed colour from green to orange.

	[2]
Explain this observation.	

www.PapaCambridge.com (c) The student investigated the temperature change when sodium hydrogencal was added to excess dilute hydrochloric acid.

Fig. 10.2 shows the apparatus she used.

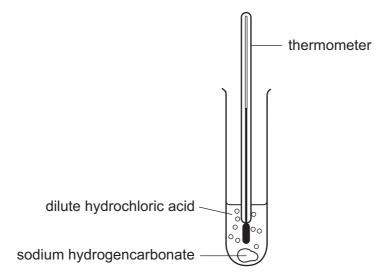


Fig. 10.2

Table 10.1 shows the temperature measurements the student made.

Table 10.1

temperature of the acid before the reaction/°C	19.0
temperature of the reaction mixture after reaction/°C	12.0

	(i)	Calculate the temperature change that occurred during the reaction.	
		°C	[2]
	(ii)	State the term that is used to describe chemical reactions that cause this type temperature change.	of
		[[1]
d)		soluble calcium compound can be made by reacting lemon juice with finely powdere g shells, which are made mainly of calcium carbonate.	∍d
	Ler	mon juice contains a relatively low concentration of acid.	
	Sug	ggest why the egg shells are used in the form of a fine powder.	
]	21

www.PapaCambridge.com

11 Fig. 11.1 shows the human gas exchange system.

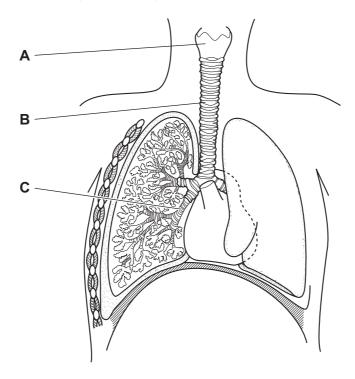


Fig. 11.1

(a) Name structures A, B and C.

Α	
В	
С	[3]

(b) Table 11.1 shows the differences in the composition of inspired and expired air.

Table 11.1

gas	percentage in inspired air	percentage in expired air
nitrogen	78	
oxygen	21	17
carbon dioxide	0.04	4
noble gases	1	

(i)	Complete Table 11.1.	[1]
(ii)	Name one noble gas that is present in air.	
		[1]

(iii)	Explain why the air that we breathe out (expired air) contains less oxygemore carbon dioxide than the air we breathe in.
	[2]
(iv)	Describe how you could show that expired air contains more carbon dioxide than inspired air. You can use a diagram if it helps your answer.

[3]

www.PapaCambridge.com (c) An athlete exercised on a treadmill. The treadmill measured her power output, in The faster she ran, the greater her power output.

(i)	Explain why the athlete's power output was greater when she ran faster.		
		••••	
		••••	
		••••	
		[2]	

(ii) The athlete was connected to a machine that measured the rate and depth breathing.

iner's

Fig. 11.2 shows how her depth of breathing changed when she ran with different power outputs.



Fig. 11.2

Describe how the athlete's depth of breathing changed when she ran with a greater power output.

[2]

(iii) State **one** other way in which her breathing would change when she ran with a greater power output.

[1]

		2-	
(a)	Light energy travels to the Earth from the Sur	Pale	20.0
	State whether this transfer of energy is by cor	nduction, convection or radiation.	1
	Explain your answer.		
		[;	2]
(b)	Light waves may change their direction when	they travel from air into glass.	
	Name this effect.	r	41
		l	1]
(c)	When an object is viewed in a plane mirror, a	n image can be seen.	
	Tick the boxes next to the three characteristic	cs which correctly describe the image.	
	same way up as object		
	upside down compared to object		
	same size as object		
	smaller than object		
	larger than object		
	laterally inverted		
	not laterally inverted		2]

© UCLES 2013

BLANK PAGE

www.PanaCambridge.com

DATA SHEET	odic Table of the Elements
Δ	Periodic
	The

0	4 H elium	20 Neon	40 Ar Argon	84 Kry Krypton 36	131 Xe Xenon 4	Radon 86		175 Lu Lutetium	Lr awrencium	Dana Cambridge. Co
=	N	19 F Fluorine 9	35.5 C1 Chlorine T7	80 Br Bromine 36	127 H Iodine 53	At Astatine 86		173 Yb Ytterbium 77	No Nobelium L	Tabe
5		16 O Oxygen 8	32 S Sulfur	79 Se Selenium 34	128 Te Tellurium 52	Po Polonium 84		169 Tm Thulium	Md Mendelevium 101	
>		14 Nitrogen 7	31 P Phosphorus 15	75 AS Arsenic	Sb Antimony 51	209 Bi Bismuth		167 Er Erbium	Fm Fermium	
≥		12 Carbon 6	28 Si Silicon	73 Ge Germanium 32	Sn Tin	207 Pb Lead		165 Ho Holmium 67	Es Einsteinium 99	e (rt.p.).
=	_	11 Boron 5	27 A1 Aluminium 13	70 Ga Gallium	115 In Indium	204 T 1 Thallium		162 Dy Dysprosium 66	Californium	d pressure
				65 Zn Zinc 30	Cd Cadmium 48	201 Hg Mercury		159 Tb Terbium 65	Bk Berkelium 97	rature and
				64 Cu Copper	108 Ag Silver 47	197 Au Gold		157 Gd Gadolinium 64	Curium 96	om tempe
Group				59 Nickel	Pd Palladium	195 Pt Platinum 78		152 Eu Europium 63	Am Americium 95	Im³ at roc
<u>5</u>		1		59 Co cobalt 27	103 Rh Rhodium 45	192 Ir Iridium 777		Samarium 62	Pu Plutonium 94	as is 24 d
	1 Hydrogen			56 Te ron	Ru Ruthenium 44	190 Os Osmium 76		Pm Promethium 61	Neptunium 93	e of any g
				55 Mn Manganese 25	Tc Technetium 43	186 Re Rhenium 75		144 Nd Neodymium 60	238 U Uranium 92	one mole
				52 Cr Chromium 24	96 Mo Molybdenum 42	184 W Tungsten		Pr Praseodymium 59	Pa Protactinium 91	The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).
				51 Vanadium 23	93 Nb Niobium 41	Tal Tantalum		140 Ce	232 Th Thorium	The
				48 Titanium 22	2r Zirconium 40	178 Haffnium	+		omic mass mbol omic) number	
				Scandium 21	89 ×	139 La Lanthanum 57	227 Ac Actinium 89	id series series	 a = relative atomic mass X = atomic symbol b = proton (atomic) number 	
=	_	Beryllium 4	24 Magnesium	40 Calcium 20	Sr Strontium	137 Ba Barium 56	226 Ra Radium 88	*58-71 Lanthanoid series 190-103 Actinoid series	a ×	
_		7 Li Lithium 3	23 Na Sodium 11	39 K Potassium	Rb Rubidium 37	133 CS Caesium 55	Fr Francium 87	*58-71 190-103	Key	

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.