

CANDIDATE NAME

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

CANDIDATE NUMBER

www.PapaCambridge.com

CENTRE NUMBER			
CO-ORDINATE	D SC	ENCI	ES
Paper 3 (Extend	led)		
Candidates ans	wer or	n the	Qu

0654/33

Paper 3 (Extended)

May/June 2013

2 hours

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use a pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO **NOT** WRITE IN ANY BARCODES.

Answer all questions.

Electronic calculators may be used.

You may lose marks if you do not show your working or if you do not use appropriate units.

A copy of the Periodic Table is printed on page 32.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

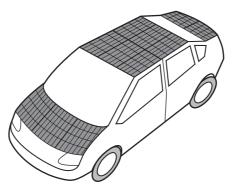
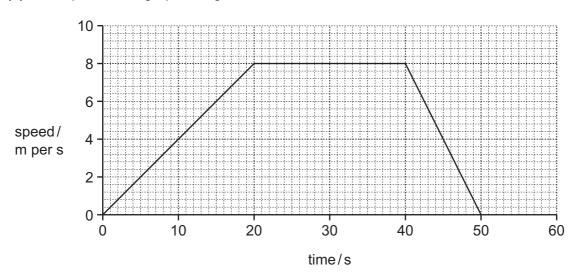
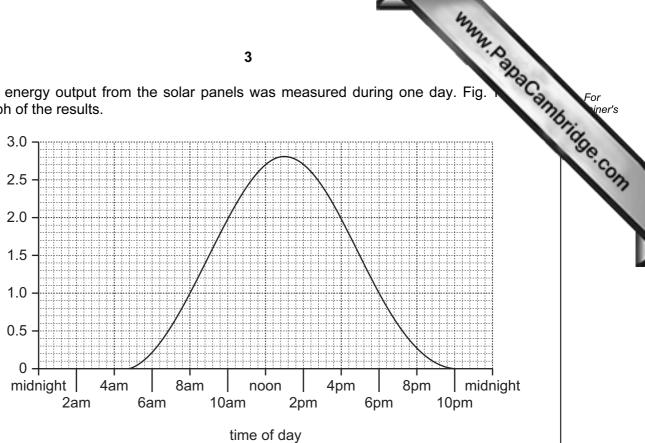


Fig. 1.1

(a) The speed/time graph in Fig. 1.2 shows the motion of the car over a short time.




Fig. 1.2

- (i) On Fig. 1.2, label **A** at a point when the car was accelerating. [1]
- (ii) Calculate the total distance travelled by the car.Show your working.

[2]

www.PatraCambridge.com

(b) The energy output from the solar panels was measured during one day. Fig. graph of the results.

energy output

in kJ/s

	rig. i.ə
(i)	Explain why the energy output from the solar panels varies during the day.
	[1]
(ii)	The motor in the car needs 2000 J/s to move the car at 7 m/s.
	Use Fig. 1.3 to calculate the number of hours in the day for which the solar cells generate sufficient electricity to run the car at this speed.
	hours [1]
(iii)	The solar cells are 20% efficient.
	Calculate the solar energy input required to produce 2000 J/s.
	State the formula that you use and show your working.
	formula
	working

[2]

MANA, Raha Cambridge Com

(iv) The mass of the car is 750 kg.

Calculate the kinetic energy of the car when it is travelling at 7 m/s.

State the formula that you use and show your working.

formula

working

[2]

(c) Fig. 1.4 shows a small photovoltaic cell (solar cell) being investigated.

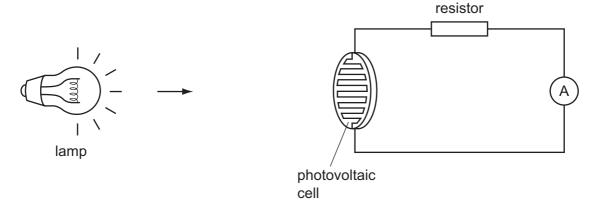


Fig. 1.4

- (i) A voltmeter is added to the circuit to measure the voltage across the photovoltaic cell.Using the correct symbol, draw the voltmeter in the correct position on Fig. 1.4. [1]
- (ii) The voltmeter reading is 2.5 V when the ammeter reading is 0.2 A.

Calculate the power output of the photovoltaic cell.

State the formula that you use and show your working.

formula

working

[2]

2 Petroleum (crude oil) contains hydrocarbon molecules that have a very wide ra relative formula masses.

www.papaCambridge.com Gasoline obtained from petroleum is in great demand for car fuel. Petroleum as it exists in the Earth's crust does not contain enough gasoline to meet this demand.

The yield of gasoline from petroleum can be increased by the process of catalytic cracking.

Fig. 2.1 shows a simplified diagram of catalytic cracking.

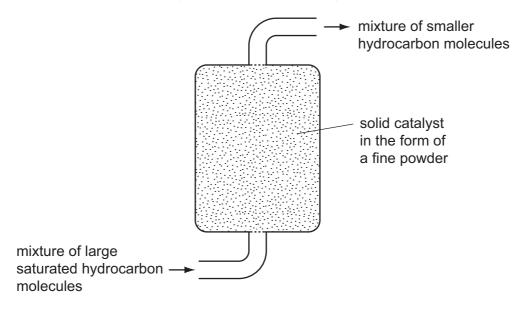


Fig. 2.1

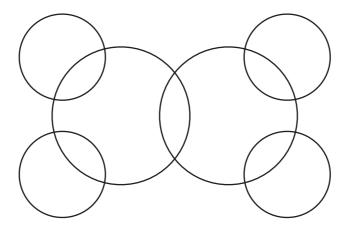
(a) Catalytic cracking produces a mixture of hydrocarbons that contains a higher proportion of gasoline.

Suggest the full name of a process that could be used to separate this gasoline from the other hydrocarbons in the mixture.

	[1	ľ
***************************************	•	-

(b) (i) Decane, $C_{10}H_{22}$, may be cracked in apparatus like that shown in Fig. 2.1.

A symbolic equation for the cracking of decane is


$$C_{10}H_{22}$$
 — one molecule of **X** + C_2H_4

Deduce the formula of a molecule of compound X.

Explain your answer briefly.

formula of m		 	
explanation	 	 	
			[2]

- (ii) Complete a bonding diagram for ethene to show
 - the chemical symbols of each atom,
 - how the bonding electrons are arranged in each atom.

[2]

(c) In a combustion experiment, a chemist reacts ethene with excess oxygen.

The balanced symbolic equation for the combustion reaction is

$$C_2H_4$$
 + $3O_2$ \longrightarrow $2CO_2$ + $2H_2O$

The chemist finds that 480 cm³ of carbon dioxide, measured at room temperature, have been produced.

(i) Calculate the number of moles of carbon dioxide that were produced. The volume of one mole of carbon dioxide at room temperature has a volume of 24 dm³.

Show your working.

[2]

(ii) Calculate the mass of ethene that the chemist used in his experiment.Show your working.

nt. For viner's

		4	
		8	
		2	8-
(a)	Fig leve	. 3.1 shows a food chain in a forest. The numbers show the energy in three els in an area of 1 m ² of forest.	For viner's
		producers herbivores carnivores	Tage
		10 000 kJ 1000 kJ 100 kJ	COM
		Fig. 3.1	
	(i)	State the form in which energy is transferred from the producers to the herbivor	es.
			[1]
	(ii)	Calculate the percentage of the energy in the producers that is transferred to carnivores.	the
		%	[1]
	, \		
	(iii)	Describe two ways in which energy is lost from the food chain.	
		1	
		2	[2]
(b)	Exp	plain how deforestation can contribute to global warming.	
			[3]

www.PapaCambridge.com A student added excess magnesium ribbon to dilute hydrochloric acid as shown in Fig.

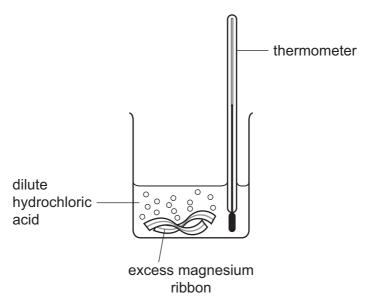


Fig. 4.1

The student observed that a gas was given off and that the temperature of the mixture increased.

(a)	(i)	Write the balanced symbolic chemical equation for the reaction between magnesium and dilute hydrochloric acid.
		[3
	(ii)	Explain why the increase in temperature of the mixture is evidence that a chemica change may have occurred.
		[2

(b) The student then set up the apparatus shown in Fig. 4.2.

www.PapaCambridge.com She investigated the effect of changing temperature on the rate of reaction between magnesium ribbon and dilute hydrochloric acid.

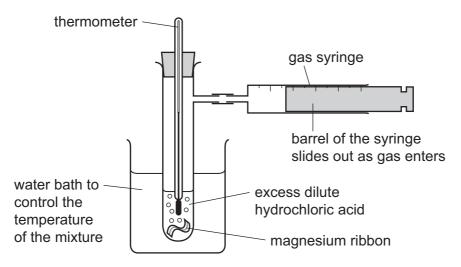


Fig. 4.2

In each experiment, the student timed how long it took for 25.0 cm³ of gas to collect in the gas syringe.

Some of her measurements are shown in Table 4.1.

Table 4.1

temperature/°C	mass of magnesium/g	acid concentration/mol per dm³	time to collect 25.0 cm³ gas/s
10	0.5	1.0	83
22	0.5	1.0	38
32	0.5	1.0	19
40	0.5	1.0	10

(i) Calculate the average rate at which gas was produced at 40 °C. Show your working.

cm ³ /s	[1]
 cm°/s	[ו]

© UCLES 2013

(ii)	State and explain, in terms of the motion of particles, the effect of chemperature on rate of reaction.	For viner's
		o. Cor.
	[3]	

© UCLES 2013 [Turn over

(a)	Vis	ible light and γ -(gamma) radiation are two regions of the electromagnetic	spec	Co
	(i)	State the speed, in km/s, of all electromagnetic waves when travelling vacuum.	g throug	h
			km/s	[1]
	(ii)	Name a region of the electromagnetic spectrum that is used in remdevices for televisions.	note con	trol
				[1]
((iii)	State one way in which the waves in different regions of the electrom differ from each other.	tromagn	etic
				[1]
(b)	Thi	ree of the following statements are true. Tick the correct statements.		[1]
(b)				[1]
(b)	Bot	ree of the following statements are true. Tick the correct statements.		[1]
(b)	Bot α-ra	ree of the following statements are true. Tick the correct statements. h α -(alpha) radiation and β -(beta) radiation pass easily through the body.		[1]
(b)	Bot α-ra Ion	ree of the following statements are true. Tick the correct statements. h α -(alpha) radiation and β-(beta) radiation pass easily through the body. adiation damages cells in a very localised area of the body.		[1]

(c) Fig. 5.1 shows how the activity of a radioactive isotope varies with time.

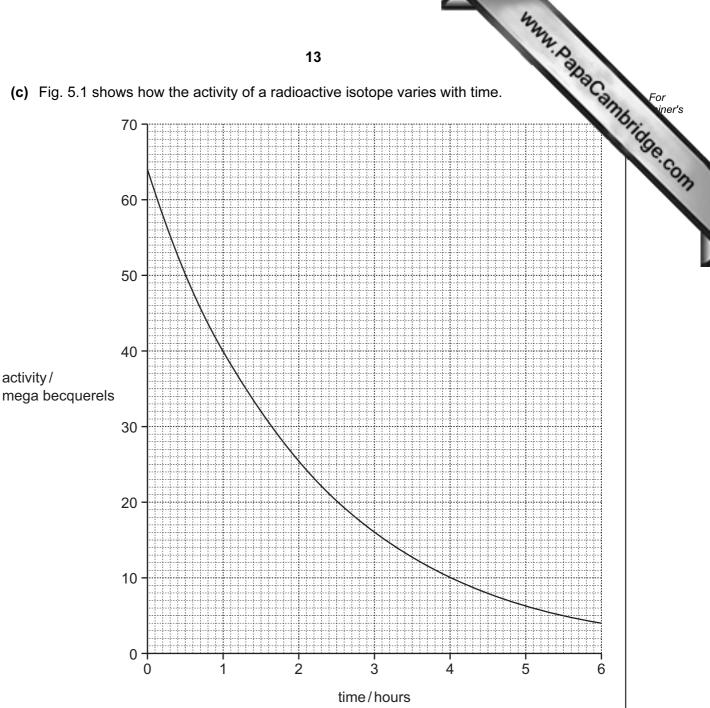


Fig. 5.1

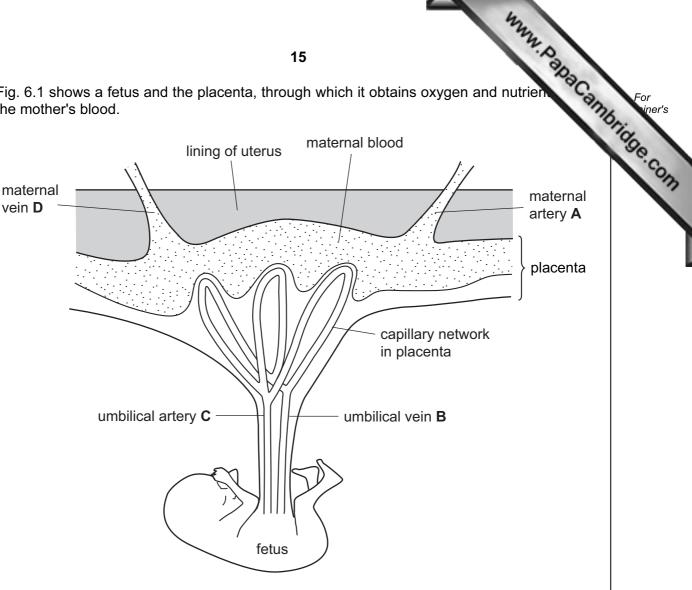
Use Fig. 5.1 to estimate the half-life of this radioactive isotope. Give your answer in minutes.

Show your working.

activity/

minutes [2]

(d) Table 5.1 shows the half-life and type of radiation given out by four different radia isotopes.


Table 5.1

.1 shows the half-life ar s.	14 nd type of radiation give	en out by four different r	radio Range For sine
	Table 5.1		Table
radioactive isotope	half-life/days	radiation given out	
bismuth-210	5.0	β	
polonium-210	138.0	α and γ	
radon-222	3.8	α	
iodine-131	8.0	β and γ	

	(i)	A sample of each isotope has the same count rate on day 1. Which sample will have the highest count rate on day 30?
		Explain your answer.
		isotope because
		[1]
	(ii)	Which isotopes in Table 5.1 give out radiation which is the most ionising?
		Explain your answer.
		isotopes and
		because
		[1]
(e)		adioactive source has a half-life of 6 hours. For which of the following uses might source be suitable?
	Exp	olain your answer.
	A	to monitor the thickness of paper as it is made in a factory.
	В	to inject into a person as a medical tracer.
	С	to make a smoke alarm work.
	use	e(s)
	exp	lanation
		[3]

6 Fig. 6.1 shows a fetus and the placenta, through which it obtains oxygen and nutrien the mother's blood.

- Fig. 6.1
- (a) Using your knowledge of arteries and veins, draw arrows on Fig. 6.1 to show the direction of blood flow in vessels A, B, C and D. [2]
- (b) Inside the placenta, the mother's blood is brought close to the fetus's blood. This allows substances to move between the mother and the fetus.
 - (i) Name **one** substance that passes from the fetus's blood to the mother's blood.

[1]

(ii) Name two useful substances, other than oxygen, that pass from the mother's blood to the fetus's blood.

2 [2]

(c)	Oxy	/gen passes from the mother's blood	to the fetus's	blood i	n the placenta.	DaCa
	(i)	Describe how oxygen is carried in the	e mother's blo	od.		
						[2]
	(ii)	In an adult, oxygen enters the blood	from the alve	oli in th	ie lungs.	
		Table 6.1 shows information about the placenta. (1 μ m = 0.001 mm)	the gas excha	ange s	urface in the lung	s and in
		Table	6.1			
		feature	lungs		placenta	
		distance across the surface/µm	0.5	3.	5]
		total surface area/m²	55	16		
		rate of blood flow/cm³ per minute	5000	600	(mother's side)	
				300	(fetus's side)	
		Explain why more oxygen can be across the placenta.	absorbed pe	r minu	ite across the lun	gs than
		Use your knowledge of gas exchang your answer.	e surfaces, ar	nd the	information in Tabl	e 6.1, in

[4]

7	(a)		lain briefly why copper is sometimes found uncombined in the Earth's craals like sodium and magnesium are never found uncombined.
		•••••	[2]
	(b)	Fig.	7.1 shows a simple diagram of the structure of bronze.
		tin	atomcopper atom
			Fig. 7.1
		(i)	State the general name of materials such as bronze.
			[1]
		(ii)	Predict and explain briefly whether bronze would be a harder or a softer material than copper.
			prediction
			[2]
	((iii)	Suggest, with a reason, whether bronze should be described as a mixture or as a compound.

© UCLES 2013 [Turn over

www.PapaCambridge.com (c) Fig. 7.2 shows two electrolysis processes (cells) connected in series with electrical power supply.

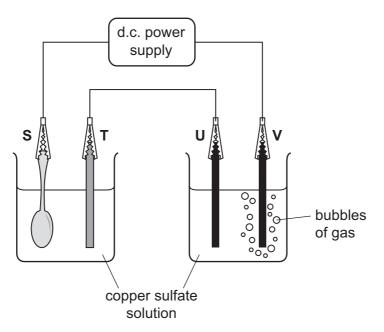


Fig. 7.2

Electrode **S** is a steel spoon which is being electroplated with a thin layer of metallic copper.

Electrodes **U** and **V** are made of carbon in the form of graphite.

The electrolyte in both processes is aqueous copper sulfate, which contains copper ions, Cu²⁺ and sulfate ions, SO₄²⁻.

(i)	Describe and explain, in terms of ions, electrons and atoms, what happens to cause a layer of copper atoms to build up on the surface of electrode S .
	[4]
(ii)	Name a gas that is contained in the bubbles rising from the surface of electrode ${\bf V}$.
	[1]

www.PapaCambridge.com (iii) Electrode T is made of a piece of copper which shows no visible change dun time that electrode **S** is being electroplated. A student knows, however, that electrode **T** slowly dissolves. Suggest how the student could obtain experimental evidence that some of the copper in electrode T had dissolved.

[Turn over

www.PapaCambridge.com 8 Fig. 8.1 shows a washing machine. When the door is closed and the machine is sw on, an electric motor rotates the drum and clothes.

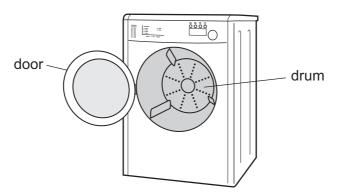


Fig. 8.1

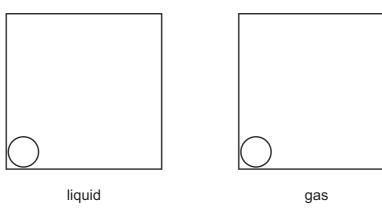
(a) The instruction booklet for the washing machine contains this information.

wash cycle	average power during wash cycle/kW	time taken to run cycle/minutes
fast	1.1	40
cool	1.2	90
hot	1.5	110

(i) Use the information to calculate the energy transferred in joules to the washing machine during the fast wash cycle.

State the formula that you use and show your working.

formula


working

[3]

	The state of the s
	21
(ii)	Explain why reducing the amount of energy used by washing machines reduce the amount of carbon dioxide emitted into the atmosphere.
	[2]
(b) (i)	A current of 3A passes through the heating element when the voltage across it is 220 V.
	Calculate the resistance of the heating element.
	State the formula that you use and show your working.
	formula
	working
	[2]
(ii)	
	Calculate the electric charge which passes through the heating element in this time.
	State the formula that you use and show your working.
	formula
	working
	[2]

- (c) Inside the washing machine, some of the water evaporates when the machine is being used.
 - (i) During evaporation, water changes state from liquid to gas.

www.papaCambridge.com Complete the diagrams to show the arrangement of particles in a liquid and in a gas.

[3]

(ii)	Explain, in terms of particles, the process of evaporation.	
		3]

9 Fig. 9.1 shows a pitcher plant, which grows in Malaysia and Indonesia.

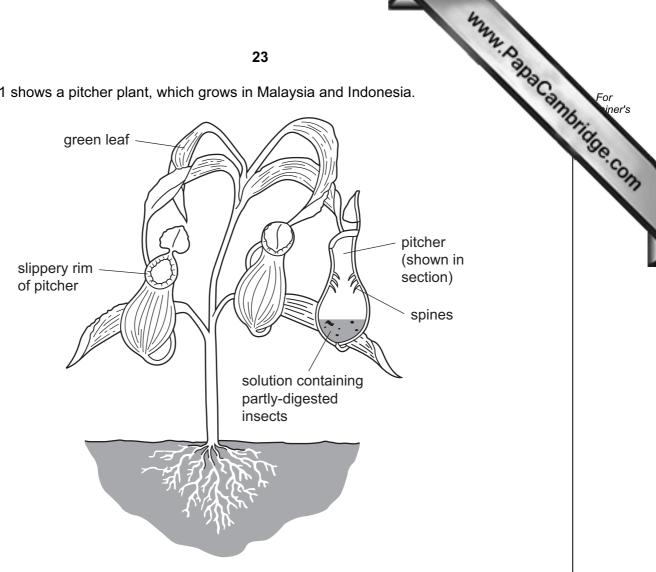


Fig. 9.1

(a) The leaves of pitcher plants carry out photosynthesis, using carbon dioxide and water to make carbohydrates. They obtain carbon dioxide and water in the same way as other plants.

(i)	Describe how the leaves obtain carbon dioxide.
	[3]
(ii)	Describe how the leaves obtain water.
	[3]

(b) Pitcher plants grow where the concentration of nitrate ions in the soil is very low plants need nitrate ions to make amino acids and proteins.

www.papaCambridge.com Pitcher plants use a different way of obtaining amino acids. They trap insects in their pitchers, and produce a solution that digests the proteins in the insects' bodies.

(i)	Define the term <i>digestion</i> .
	[2]
(ii)	Suggest what is present in the solution that the pitcher plant produces inside its pitchers, to enable digestion to take place.
	[2]

(c) A scientist investigated why insects visit the pitchers.

She took several identical Petri dishes.

- She placed a piece of the rim of a pitcher, or a small amount of solution from inside the pitcher or water, on one side of the dish.
- She put a small amount of water on the other side, as shown in Fig. 9.2.
- She then placed either an ant or a fruit fly in the centre of the dish. She recorded which side of the dish the insect moved to.

She repeated this 19 more times with each type of insect, using a different insect each time.

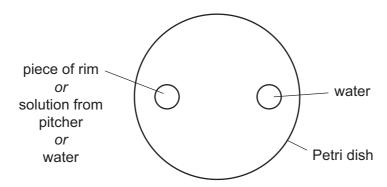


Fig. 9.2

Table 9.1

Гable 9.1 shows her re	25 sults.			insects that each side	Can
	Table 9.1			`	, Di
substance on left	substance on right	insects		insects that each side	
side of dish	side of dish		left	right	
piece of rim	water	ants	16	4	
piece or filli	water	fruit flies	14	6	
colution from pitcher	water	ants	4	16	
solution from pitcher	water	fruit flies	8	12	
water	water	ants	10	10	
water	water	fruit flies	9	11	

(i) Suggest (wity the scientist placed water on both sides of some dishes.	
		[1]
` '	rmation in Table 9.1 to describe how the responses of the insects help them to avoid being caught in the pitchers.	to a
		[1]
iii) Pitcher p pitchers.	plants have several features that help them to catch insects in	their
Use infor	mation in Fig. 9.1 and Table 9.1 to explain how they do this.	
		[3]

10 (a) When wood is burnt, a solid material known as wood ash remains.

	the the tenth of t	
	26	1
Wh	en wood is burnt, a solid material known as wood ash remains.	S.C.
	en wood is burnt, a solid material known as wood ash remains. od ash contains calcium carbonate and potassium compounds which can be umprove the quality of soil. Explain briefly how calcium carbonate and potassium compounds could impressed the quality of soil.	SE
(i)	Explain briefly how calcium carbonate and potassium compounds could impressed the quality of soil.	ove
	calcium carbonate	
		•••••
	potassium compounds	
		[3]
(ii)	The chemical formula of potassium carbonate is K_2CO_3 . Potassium is in Group 1 of the Periodic Table.	
	Predict and explain the formula and charge of the carbonate ion.	
	Show your working.	
		[2]

www.PapaCambridge.com (b) Soil quality is also improved by the addition of nitrogen compounds such as amn nitrate. Nitrogen compounds are made industrially using ammonia, NH₃, which produced from nitrogen and hydrogen in the Haber process.

Fig. 10.1 shows a simplified flow diagram of part of the Haber process.

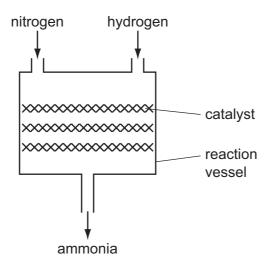


Fig. 10.1

(i)	Name the main substance in the catalyst shown in Fig. 10.1.	
		[1]
(ii)	Explain briefly why a catalyst is required in the reaction vessel.	
		[1]
iii)	Name the substance that neutralises ammonia to produce ammonium nitrate.	
		[1]

www.PapaCambridge.com 11 (a) Complete the graph in Fig. 11.1 to show how enzyme activity is affect. temperature. You should include a scale on the 'temperature' axis.

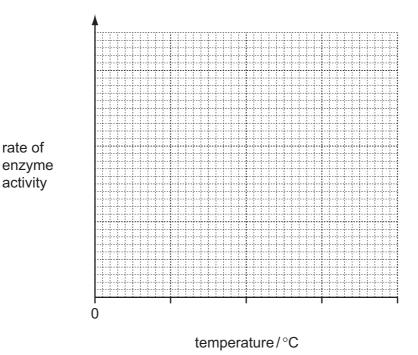


Fig. 11.1

[3]

(b) The internal body temperature of a human is kept constant, allowing enzymes to work efficiently. Fig. 11.2 outlines how receptors and effectors are involved in this process.

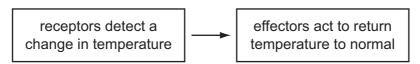


Fig. 11.2

(i)	State one place in the body where receptors detect a change in body temperature	ıre.
		[1]
(ii)	Explain how the muscles can help to return a low body temperature to normal.	
		•••••
		[2]

(iii)	This control mechanism involves negative feedback.	AC AL
	Explain what is meant by the term negative feedback.	
		[2]

BLANK PAGE

www.PanaCambridge.com

BLANK PAGE

www.PanaCambridge.com

DATA SHEET	odic Table of the Elements
Ω	Periodic
	The

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.