

Cambridge IGCSE[™]

CO-ORDINATED SCIENCES

0654/23

Paper 2 Multiple Choice (Extended)

October/November 2020

45 minutes

You must answer on the multiple choice answer sheet.

You will need: Multiple choice answer sheet

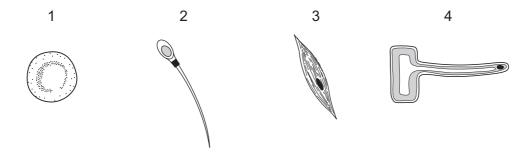
Soft clean eraser

Soft pencil (type B or HB is recommended)

INSTRUCTIONS

There are forty questions on this paper. Answer all questions.

- For each question there are four possible answers **A**, **B**, **C** and **D**. Choose the **one** you consider correct and record your choice in soft pencil on the multiple choice answer sheet.
- Follow the instructions on the multiple choice answer sheet.
- Write in soft pencil.
- Write your name, centre number and candidate number on the multiple choice answer sheet in the spaces provided unless this has been done for you.
- Do not use correction fluid.
- Do not write on any bar codes.
- You may use a calculator.


INFORMATION

- The total mark for this paper is 40.
- Each correct answer will score one mark. A mark will not be deducted for a wrong answer.
- Any rough working should be done on this question paper.
- The Periodic Table is printed in the question paper.

1	Wh	at is not a characteristic of all living organisms?
	Α	excretion
	В	growth
	С	photosynthesis
	D	sensitivity
_		in the second of

2 The diagrams show four different cells found in living organisms.

Which cell types have a large surface area for diffusion?

- **A** 1 and 2 **B** 1 and 4 **C** 2 and 3 **D** 3 and 4
- 3 What colour does Benedict's solution change to when heated with a reducing sugar?
 - **A** blue
 - B blue-black
 - **C** orange
 - **D** purple

4 A mixture of starch and saliva was set up at four different temperatures. Each mixture was tested with iodine solution after 15 minutes and again after 30 minutes.

The results are shown in the table.

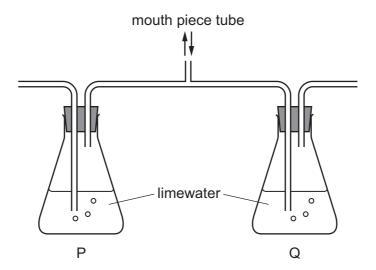
temperature	colour with iodine solution		
/°C	15 minutes	30 minutes	
0	blue-black	blue-black	
15	blue-black	brown	
35	brown	brown	
95	blue-black	blue-black	

What do the results suggest?

- **A** The enzyme in saliva is inactive at 95 °C.
- **B** The enzyme in saliva is slow to work at 35 °C.
- **C** The enzyme in saliva works equally well at 15 °C and 35 °C.
- **D** The enzyme in saliva works faster at higher temperatures.
- 5 What is the effect of nitrate ion deficiency on plants?

	leaf colour	growth
Α	green	good
В	green	poor
С	yellow	good
D	yellow	poor

6 Much of the internal surface of the human small intestine is covered with villi.


What is the function of villi?

- A excretion of waste into the intestine
- B secretion of enzymes into the intestine
- **C** to improve blood circulation in the intestine walls
- **D** to increase the internal surface area of the intestine

7 Under which conditions will transpiration from a plant be fastest?

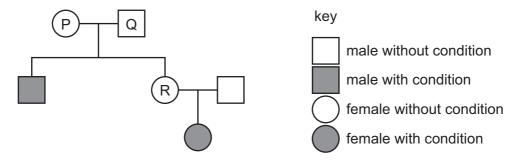
	temperature	humidity
Α	high	high
В	high	low
С	low	high
D	low	low

8 A student breathed gently in and out of the mouth piece of the apparatus shown.

What were the results after 10 breaths?

	Р	Q
Α	clear	clear
В	clear	milky
С	milky	clear
D	milky	milky

9 During an experiment, auxin is applied to one side of a shoot just behind the tip.


What will this stimulate?

- A decreased cell elongation in all cells
- **B** decreased cell elongation on the side with extra auxin
- **C** increased cell elongation in all cells
- **D** increased cell elongation on the side with extra auxin

10 In human reproduction, which cells are haploid?

	gametes	zygotes
Α	✓	✓
В	✓	X
С	X	✓
D	X	x

11 The pedigree diagram shows the inheritance of a recessive condition.

Which statements are correct with reference to this condition?

- 1 P and Q are both heterozygous for the condition.
- 2 Q and R have different genotypes.
- 3 P and R have the same genotype.
- **A** 1 and 2 only **B** 1 and 3 only **C** 2 and 3 only **D** 1, 2 and 3
- 12 What is the name given to a unit containing all of the organisms and their environment interacting together in a given area?
 - A ecosystem
 - B food chain
 - C food web
 - **D** trophic level
- 13 Which row about some of the stages of eutrophication is correct?

	growth of producers	growth of decomposers	respiration of decomposers	concentration of dissolved oxygen
Α	decreases	increases	decreases	increases
В	decreases	decreases	increases	increases
С	increases	decreases	decreases	decreases
D	increases	increases	increases	decreases

14 A mixture of solid sulfur and solid sodium chloride is added to water and stirred.

Sulfur is insoluble in water.

Sodium chloride is soluble in water.

Which processes are used to obtain pure sodium chloride from the mixture?

- A distillation then chromatography
- B distillation then crystallisation
- **C** filtration then chromatography
- **D** filtration then crystallisation
- **15** Which sample contains the most molecules?
 - A $16 \,\mathrm{dm}^3 \,\mathrm{CH}_4$
 - **B** $28 \, \text{dm}^3 \, \text{C}_2 \text{H}_4$
 - C 16g CH₄
 - **D** $28g C_2H_4$
- 16 Which row describes what happens at the electrodes during electrolysis?

	at the anode	at the cathode
Α	negative ions gain electrons	positive ions lose electrons
В	negative ions lose electrons	positive ions gain electrons
С	positive ions gain electrons	negative ions lose electrons
D	positive ions lose electrons	negative ions gain electrons

- 17 Which process is exothermic?
 - A boiling water
 - B cracking a long chain alkene
 - **C** decomposition of limestone
 - **D** identification of hydrogen using a lit splint

18 Magnesium ribbon is reacted with excess dilute hydrochloric acid at 25 °C.

The experiment is repeated at 45 °C, using the same mass of magnesium and the same volume and concentration of dilute hydrochloric acid.

Which statement explains why the reaction is faster at 45 °C?

- A Collisions between particles at 45 °C are less frequent and fewer colliding particles possess the activation energy.
- **B** Collisions between particles at 45 °C are less frequent and more colliding particles possess the activation energy.
- **C** Collisions between particles at 45 °C are more frequent and fewer colliding particles possess the activation energy.
- **D** Collisions between particles at 45 °C are more frequent and more colliding particles possess the activation energy.
- **19** Which word equation represents a redox reaction?
 - A carbon + copper oxide → copper + carbon dioxide
 - **B** hydrochloric acid + potassium hydroxide → potassium chloride + water
 - **C** magnesium carbonate → magnesium oxide + carbon dioxide
 - **D** sodium sulfate + barium nitrate → barium sulfate + sodium nitrate
- **20** Salts are made by reacting dilute hydrochloric acid with four substances.
 - 1 magnesium
 - 2 magnesium carbonate
 - 3 magnesium hydroxide
 - 4 magnesium oxide

Which substances produce a gas when reacted with dilute hydrochloric acid?

- **A** 1 and 2
- **B** 1 and 3
- **C** 2 and 4
- **D** 3 and 4
- 21 Which statement about elements in the Periodic Table is correct?
 - **A** The density of the elements in Group I increases up the group.
 - **B** The metallic character of the elements increases across a period from left to right.
 - **C** The number of protons in the atoms of the elements increases across a period from left to right.
 - **D** The reactivity of the elements in Group I decreases down the group.

22 Four metals W, X, Y and Z are added to aqueous solutions of their ions.

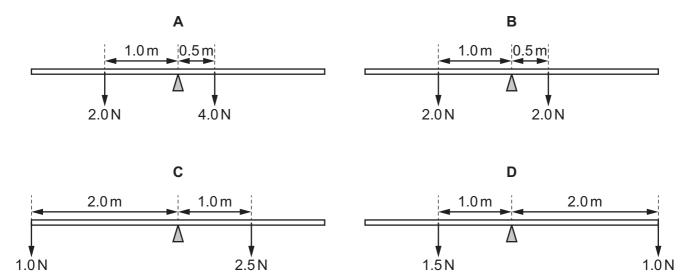
The results are shown.

metal	Y ions	Z ions	W ions	X ions
W	reaction	reaction	no reaction	reaction
X	reaction	reaction	no reaction	no reaction
Υ	no reaction	reaction	no reaction	no reaction
Z	no reaction	no reaction	no reaction	no reaction

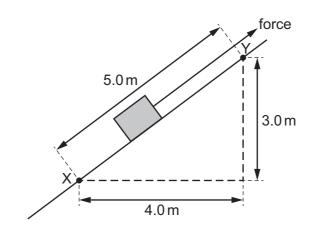
What is the order of reactivity?

	least reactive	e	→ r	nost reactive
Α	W	X	Y	Z
В	W	Υ	X	Z
С	Z	Χ	Υ	W
D	Z	Υ	X	W

- 23 Which process does **not** produce carbon dioxide?
 - A acid reacting with a metal
 - **B** acid reacting with sodium carbonate
 - **C** complete combustion of methane
 - **D** respiration
- 24 The Haber process is used to make ammonia.


Which row shows the conditions used in this process?

	catalyst	temperature /°C	pressure /atm
Α	Fe	250	450
В	Fe	450	250
С	V_2O_5	250	450
D	V_2O_5	450	250

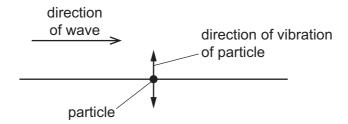

		9
25	The	e Contact process is used to manufacture sulfuric acid.
	Wh	ich statement about the Contact process is not correct?
	Α	A nickel catalyst is used.
	В	Sulfur dioxide reacts with oxygen to form sulfur trioxide.
	С	Sulfur burns to form sulfur dioxide.
	D	Sulfur trioxide dissolves in concentrated sulfuric acid to form oleum.
26	Wh	at reacts with ethene to make ethanol?
	A	bromine
	В	hydrogen
	С	steam
	D	yeast
27	Pol	y(ethene) is made from ethene by the process of addition polymerisation.
	Wh	ich word describes ethene in this process?
	A	fuel
	В	catalyst
	С	monomer
	D	solvent
28	A c	concrete block exerts a pressure on the ground.
	Wh	ich expression is used to calculate the pressure due to the block?
	A	(mass of block) \times (area of contact with the ground)
		(managa filanda)

29 The diagrams show four uniform beams, each supported by a pivot at its centre.

Which diagram shows a beam that is balanced?

30 The diagram shows a box of weight 600 N being pulled up a frictionless slope by a force.

How much work is done against gravity in moving the box from X to Y?

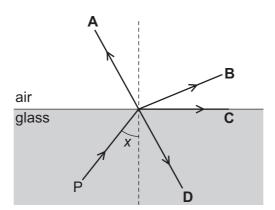

- **A** 600 J
- **B** 1800 J
- C 24000J
- **D** 30000 J

31 Electricity is generated in power stations. Many power stations use steam to drive turbines.

Which type of power station does **not** use steam?

- A chemical energy (fuel) power stations
- **B** geothermal energy power stations
- C hydroelectric energy power stations
- **D** nuclear energy power stations

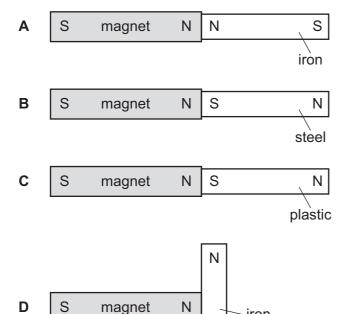
- **32** Which part of the electromagnetic spectrum is often involved in thermal energy transfer by radiation?
 - A infrared
 - **B** radio
 - **C** ultraviolet
 - **D** X-rays
- **33** The diagram shows the direction of a wave that passes a particle. The particle is made to vibrate by the wave. The direction of vibration of the particle is shown.



Which row states the type of wave that passes the particle, and gives an example of this type of wave?

	type of wave	example
Α	longitudinal	light
В	longitudinal	sound
С	transverse	light
D	transverse	sound

34 The diagram shows a ray of light travelling in glass from point P. Angle *x* is greater than the critical angle.


In which labelled direction does the ray continue?

35 In an experiment to investigate induced magnetism, a magnet is brought close to samples of different unmagnetised materials. A student records the results using diagrams.

The teacher checks the diagrams and finds that only one result is correctly recorded.

Which result is correctly recorded?

36 The current in an ammeter is 1.5 A.

How much charge passes through the ammeter in one minute?

S

- iron

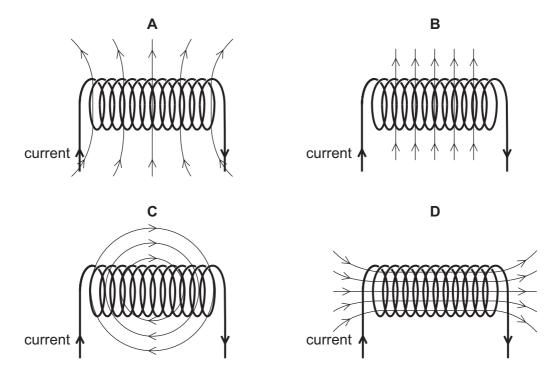
- **A** 0.025 C
- **B** 1.5 C
- **C** 40 C
- **D** 90 C

37 A heating element in an electric kettle has a resistance of 24Ω .

When the kettle is connected to a 240 V supply, it takes 2.5 minutes to boil some water.

How much energy is used to boil the water?

- **A** 16J
- **B** 960 J
- **C** 6000J
- **D** 360 000 J


38 Fuses are used in domestic electric circuits.

Which statement about fuses is correct?

- A A fuse is connected in the live wire.
- A fuse is connected in the neutral wire.
- C A 3 A fuse produces a current of exactly 3 A in the circuit.
- A 3 A fuse produces a minimum current of 3 A in the circuit.

39 A solenoid carrying a current produces a magnetic field.

Which diagram shows the magnetic field pattern?

- **40** Which type of radiation has the greatest ionising effect?
 - A infrared rays
 - $\textbf{B} \quad \alpha\text{-particles}$
 - **C** β -particles
 - **D** γ-rays

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

The Periodic Table of Elements

	=	2 T	helium	4	10	Ne	neon 20	18	Ā	argon 40	36	궃	krypton 84	54	Xe	xenon 131	98	牊	radon			
	\equiv				6	ட	fluorine 19	17	Cl	chlorine 35.5	35	ğ	bromine 80	53	Н	iodine 127	85	Ą	astatine -			
	>				80	0	oxygen 16	16	S	sulfur 32	34	Se	selenium 79	52	Те	tellurium 128	84	Ъ	polonium –	116	_	livermorium –
	>				7	z	nitrogen 14	15	Ф	phosphorus 31	33	As	arsenic 75	51	Sp	antimony 122	83	<u>B</u>	bismuth 209			
	≥				9	ပ	carbon 12	14	S	silicon 28	32	Ge	germanium 73	20	Sn	tin 119	82	Pb	lead 207	114	Εl	flerovium -
	≡				5	Ω	boron 11	13	Αl	aluminium 27	31	Ga	gallium 70	49	I	indium 115	84	lΤ	thallium 204			
											30	Zn	zinc 65	48	ည	cadmium 112	80	Нg	mercury 201	112	S	copernicium —
											29	Cn	copper 64	47	Ag	silver 108	62	Au	gold 197	111	Rg	roentgenium -
Group	,										28	Z	nickel 59	46	Pd	palladium 106	78	귙	platinum 195	110	Ds	darmstadtium -
ั้											27	ပိ	cobalt 59	45	格	rhodium 103	77	ľ	iridium 192	109	Μţ	meitnerium -
		- 1	hydrogen	-							26	Fe	iron 56	4	Ru	ruthenium 101	9/	Os	osmium 190	108	Hs	hassium -
								1			25	Mn	manganese 55	43	ည	technetium -	75	Re	rhenium 186	107	Bh	bohrium —
					_	loqi	ass				24	ပ်	chromium 52	42	Mo	molybdenum 96	74	≥	tungsten 184	106	Sg	seaborgium -
			X	Ney	atomic number	atomic symbo	name relative atomic mass				23	>	vanadium 51	41	g	niobium 93	73	<u>a</u>	tantalum 181	105	В	dubnium —
						atc	rel				22	j	titanium 48	40	Zr	zirconium 91	72	Ξ	hafnium 178	104	弘	rutherfordium —
				ı							21	လွ	scandium 45	39				lanthanoids		89–103	actinoids	
	=				4	Be	beryllium 9	12	Mg	magnesium 24	20	Ca	calcium 40	38	ഗ്	strontium 88	26	Ba	barium 137	88	Ra	radium _
	_				က	=	lithium 7	11	Na	sodium 23	19	×	potassium 39	37	S S	rubidium 85	22	S	caesium 133	87	Ъ,	francium -

			_		_	
71	Γn	lutetium 175	103	۲	lawrencium	I
70	Υp	ytterbium 173	102	%	nobelium	I
69	Tm	thulium 169	101	Md	mendelevium	ı
89	Щ	erbium 167	100	Fm	ferminm	I
29	웃	holmium 165	66	Es	einsteinium	1
99	۵	dysprosium 163	86	ŭ	califomium	ı
65	Tp	terbium 159	97	益	berkelium	ı
64	В	gadolinium 157	96	Cm	curium	ı
63	Ш	europium 152	92	Am	americium	ı
62	Sm	samarium 150	94	Pn	plutonium	ı
61	Pm	promethium -	93	Δ	neptunium	1
09	pN	neodymium 144	92	\supset	uranium	238
69	ď	praseodymium 141	91	Ра	protactinium	231
28	Ce	cerium 140	06	Ч	thorium	232
22	Га	lanthanum 139	88	Ac	actinium	ı

lanthanoids

actinoids

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).