

Cambridge IGCSE[™]

CO-ORDINATED SCIENCES

0654/12

Paper 1 Multiple Choice (Core)

October/November 2024

45 minutes

You must answer on the multiple choice answer sheet.

You will need: Multiple choice answer sheet

Soft clean eraser

Soft pencil (type B or HB is recommended)

INSTRUCTIONS

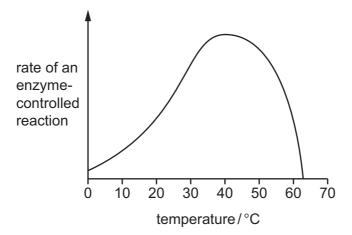
There are forty questions on this paper. Answer all questions.

- For each question there are four possible answers **A**, **B**, **C** and **D**. Choose the **one** you consider correct and record your choice in soft pencil on the multiple choice answer sheet.
- Follow the instructions on the multiple choice answer sheet.
- Write in soft pencil.
- Write your name, centre number and candidate number on the multiple choice answer sheet in the spaces provided unless this has been done for you.
- Do not use correction fluid.
- Do not write on any bar codes.
- You may use a calculator.

INFORMATION

- The total mark for this paper is 40.
- Each correct answer will score one mark.
- Any rough working should be done on this question paper.
- The Periodic Table is printed in the question paper.

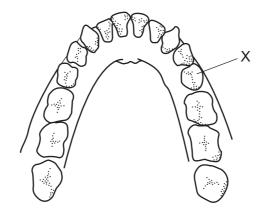
1	What are	two of the	characteristics	of all living	organisms?


- A breathing and respiration
- **B** egestion and excretion
- **C** movement and sensitivity
- **D** nutrition and photosynthesis

2 Which statements about cell structure are correct?

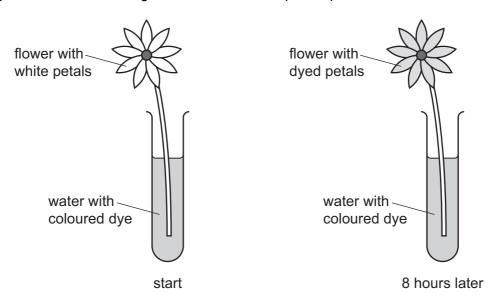
- 1 Animal cells have cell membranes but no cell walls.
- 2 Animal cells have cell membranes and cell walls.
- 3 Plant cells have cell walls but no cell membranes.
- 4 Plant cells have cell membranes and cell walls.
- **A** 1 and 3 **B** 1 and 4 **C** 2 and 3 **D** 2 and 4
- 3 What is required to test for the presence of a reducing sugar?

	Benedict's solution	biuret solution	heat
Α	✓	X	✓
В	X	✓	✓
С	✓	X	X
D	X	✓	X


4 The graph shows the effect of increasing temperature on the rate of an enzyme-controlled reaction.

Which statement describes what is happening between 10 °C and 30 °C on the graph?

- **A** An increase in the rate of reaction increases the temperature of the reaction.
- **B** An increase in temperature has no effect on the rate of a reaction.
- **C** As the rate of reaction increases, the temperature has no effect.
- **D** As the temperature increases, the rate of reaction also increases.
- 5 What are the products of photosynthesis in a green plant?
 - A carbon dioxide and water
 - B glucose and carbon dioxide
 - C oxygen and glucose
 - **D** oxygen and water


6 The diagram shows human teeth in the lower jaw.

Which type of tooth is X?

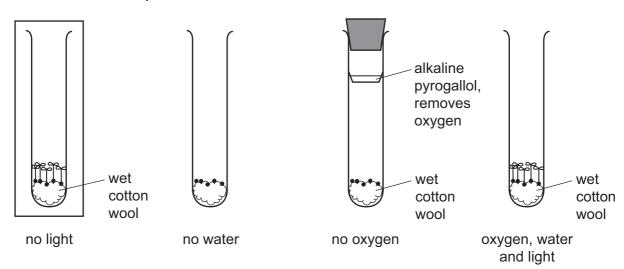
- A canine
- **B** incisor
- C molar
- **D** premolar

7 The diagram shows an investigation into water transport in plants.

Which part of the stem transports the coloured dye from the test-tube to the petals of the flower?

- A mesophyll cells
- **B** phloem
- C root hair cells
- **D** xylem

8 Which row shows the changes that occur during exercise?


	breathing rate	depth of breathing
Α	increases	increases
В	increases	stays the same
С	stays the same	increases
D	stays the same	stays the same

9 Which activities increase the secretion of adrenaline in the human body?

	running to catch a bus	relaxing in the sun	watching a frightening horror film
Α	✓	X	✓
В	X	✓	✓
С	✓	X	X
D	x	✓	x

10 The roles of oxygen, water and light in seed germination are investigated.

The results of the experiment are shown.

Which factors are shown to be needed for germination?

- A light and water only
- **B** light and oxygen only
- **C** oxygen and water only
- **D** oxygen, water and light

11 In a plant, the allele for red flowers is dominant to the allele for yellow flowers. A heterozygous red-flowered plant is crossed with a homozygous yellow-flowered plant.

Which statement about the offspring is correct?

- A 25% will have red flowers and 75% will have yellow flowers.
- **B** 50% will have red flowers and 50% will have yellow flowers.
- C 75% will have red flowers and 25% will have yellow flowers.
- **D** 100% will have red flowers and 0% will have yellow flowers.
- **12** Which definition is correctly matched to a type of organism?

	organism	definition
Α	producer	an organism that gets its energy by feeding on other organisms
В	consumer	an organism that gets its energy from dead or waste organic matter
С	decomposer	an animal that gets its energy by eating other animals
D	herbivore	an animal that gets its energy by eating plants

13 Which row about a process in the carbon cycle is correct?

	process	effect on level of atmospheric carbon dioxide
Α	combustion	decreases
В	decomposition	increases
С	fossilisation	increases
D	respiration	decreases

14 Calcium carbonate reacts with dilute hydrochloric acid in a flask. The reaction releases carbon dioxide gas.

The decrease in the mass of the flask and its contents is measured over time.

Which pieces of apparatus must be used?

- 1 balance
- 2 pipette
- 3 thermometer
- 4 stop-clock
- **A** 1 and 2 **B** 1 and 4 **C** 2 and 3 **D** 3 and 4
- 15 Which process involves a chemical change?
 - A burning a wooden splint
 - **B** dissolving sodium chloride in water
 - **C** evaporating water
 - D distilling petroleum
- **16** Which formula contains the most elements?
 - **A** NaOH **B** Rb₂S **C** SiC l_4 **D** SnO₂
- 17 What are the products of the electrolysis of dilute sulfuric acid using inert electrodes?
 - A hydrogen and sulfur dioxide
 - B oxygen and hydrogen
 - C oxygen and sulfur
 - D oxygen and sulfur dioxide

18 Some observations about two reactions are shown.

In reaction 1, heat is taken in from the surroundings.

In reaction 2, heat is released to the surroundings.

Which row describes each reaction?

	reaction 1	reaction 2
Α	endothermic	endothermic
В	endothermic	exothermic
С	exothermic	exothermic
D	exothermic	endothermic

19 Four beakers each contain 50 cm³ dilute hydrochloric acid of equal concentration.

50 cm³ of water is added to two of the beakers.

4.0 g magnesium carbonate is then added to each beaker. The particle sizes of the magnesium carbonate added to some of the beakers are different.

Which experiment has the lowest rate of reaction?

	volume of dilute hydrochloric acid/cm ³	volume of water/cm ³	mass of magnesium carbonate/g	size of pieces of magnesium carbonate
Α	50	50	4.0	small
В	50	0	4.0	small
С	50	50	4.0	large
D	50	0	4.0	large

20 A piece of magnesium ribbon is placed in dilute hydrochloric acid.

The magnesium reacts and bubbles of a colourless gas are formed.

What is the word equation for this reaction?

A magnesium + hydrochloric acid → magnesium chloride + hydrogen

B magnesium + hydrochloric acid → magnesium chloride + carbon dioxide + water

C magnesium + hydrochloric acid → magnesium chloride + carbon dioxide

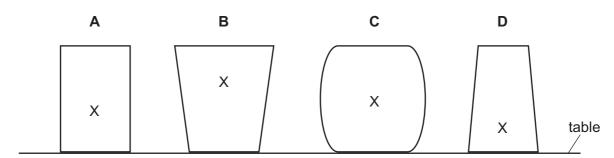
D magnesium + hydrochloric acid → magnesium chloride + hydrogen + water

Wh	nich chemical test does not produce a precipitate?						
A	carbon c	dioxide and	limewater				
В	carbonate ions and dilute hydrochloric acid						
С	chloride ions and aqueous silver nitrate						
D	copper(I	II) ions and	aqueous sodiu	ım hy	droxide		
Wh	ich staten	nent about	the halogens is	s corre	ect?		
A	They be	come lighte	er in colour dow	n the	group.		
В	They are	e all gases	at room tempe	rature			
С	They are	e members	of the same pe	eriod o	of the Periodic	Table	
D	They exi	ist as diator	mic molecules.				
Ηον	w is iron c	oxide conve	erted to iron?				
		•					
		•					
	•						
	raduation		DON				
D	reduction	ir using can					
		-	air contains 10	.5 cm³	of oxygen?		
		-	air contains 10		of oxygen?	D	100 cm ³
Wh	ich volum 21 cm³	ne of clean a	air contains 10.		, ,	D	100 cm ³
Wh	ich volum 21 cm³	ne of clean a	air contains 10. 42 cm ³ nestone?		, ,	D	100 cm ³
Wh	ich volum 21 cm ³ at are two	ne of clean a B o uses of lin as a fertilis	air contains 10. 42 cm ³ nestone?	С	, ,	D	100 cm ³
Wh	ich volum 21 cm ³ at are two 1	ne of clean a B o uses of lin as a fertilis	air contains 10. 42 cm ³ mestone? ser e the pH of soi	С	, ,	D	100 cm ³
Wh	ich volum 21 cm ³ at are two 1 2	ne of clean a B o uses of lin as a fertilis to decreas making lim	air contains 10. 42 cm ³ mestone? ser e the pH of soi	C	50 cm ³	D	100 cm ³
	A B C D Wh	A carbon of B carbona C chloride D copper(I) Which statem A They be B They are C They are D They existed A oxidation B reaction C reaction	A carbon dioxide and B carbonate ions and C chloride ions and ac D copper(II) ions and Which statement about A They become lighte B They are all gases C They are members D They exist as diator How is iron oxide convert A oxidation using wat B reaction with hydrocome	A carbon dioxide and limewater B carbonate ions and dilute hydroch C chloride ions and aqueous silver r D copper(II) ions and aqueous sodiu Which statement about the halogens is A They become lighter in colour dow B They are all gases at room tempe C They are members of the same pe D They exist as diatomic molecules. How is iron oxide converted to iron? A oxidation using water B reaction with hydrochloric acid C reaction with sodium hydroxide	A carbon dioxide and limewater B carbonate ions and dilute hydrochloric at C chloride ions and aqueous silver nitrate D copper(II) ions and aqueous sodium hydrochloric acid A They become lighter in colour down the B They are all gases at room temperature C They are members of the same period of D They exist as diatomic molecules. How is iron oxide converted to iron? A oxidation using water B reaction with hydrochloric acid C reaction with sodium hydroxide	 A carbon dioxide and limewater B carbonate ions and dilute hydrochloric acid C chloride ions and aqueous silver nitrate D copper(II) ions and aqueous sodium hydroxide Which statement about the halogens is correct? A They become lighter in colour down the group. B They are all gases at room temperature. C They are members of the same period of the Periodic D They exist as diatomic molecules. How is iron oxide converted to iron? A oxidation using water B reaction with hydrochloric acid C reaction with sodium hydroxide 	 A carbon dioxide and limewater B carbonate ions and dilute hydrochloric acid C chloride ions and aqueous silver nitrate D copper(II) ions and aqueous sodium hydroxide Which statement about the halogens is correct? A They become lighter in colour down the group. B They are all gases at room temperature. C They are members of the same period of the Periodic Table D They exist as diatomic molecules. How is iron oxide converted to iron? A oxidation using water B reaction with hydrochloric acid C reaction with sodium hydroxide

26 Petroleum is separated into fractions by fractional distillation.

Which row shows a use for the named fraction?

	fraction	use
Α	bitumen	feedstock for making chemicals
В	diesel oil/gas oil	road surfaces
С	naphtha	fuel in car engines
D	refinery gas	cooking and heating


- 27 Which statement about addition polymerisation is correct?
 - A Large monomer units join to form small polymer molecules.
 - **B** Large polymer molecules join to form small monomer units.
 - **C** Small monomer units join to form large polymer molecules.
 - **D** Small polymer molecules join to form large monomer units.
- 28 An object has a weight of 2.0 N.

The gravitational field strength g is $10 \,\mathrm{N/kg}$.

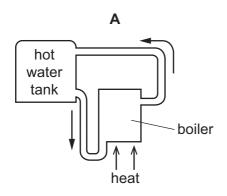
What is the mass of the object?

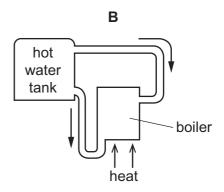
- **A** 0.020 kg
- **B** 0.20 kg
- **C** 2.0 kg
- **D** 20 kg
- **29** The diagram shows four containers resting on a table. The containers have equal masses and square bases of equal areas. The centre of mass of each container is labelled X.

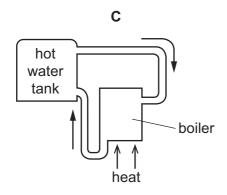
Which container is the most stable?

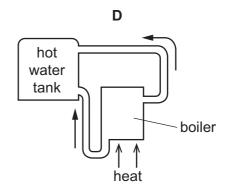
30 A worker exerts a force on a box to move it across a horizontal surface.

Which of the two quantities in the table affect the amount of work done by the force?

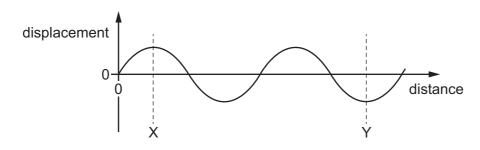

	magnitude of the force	distance moved by the box	
Α	✓	✓	key
В	✓	X	√ = affects the work done
С	X	✓	x = does not affect the work done
D	X	X	

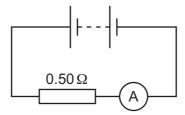

- 31 What is the useful energy transfer in a wind turbine?
 - A electrical energy to thermal energy
 - **B** gravitational potential energy to kinetic energy
 - **C** kinetic energy to electrical energy
 - **D** thermal energy to gravitational potential energy
- 32 What are the names for the changes of state between solids, liquids and gases?


	solid to liquid	liquid to gas
Α	melting	condensation
В	melting	evaporation
С	solidification	condensation
D	solidification	evaporation


33 The diagrams show part of a water-heating system which is working by convection.

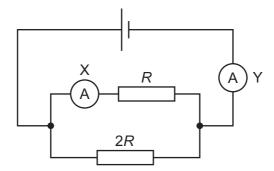
Which diagram shows the flow of water in the system?




34 The diagram represents a wave.

How many wavelengths are there between X and Y?

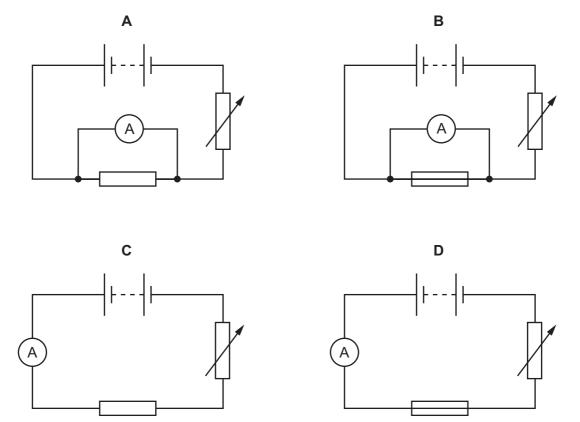
- $\mathbf{A} \quad \frac{2}{3}$
- **B** 1
- **C** $1\frac{1}{2}$
- **D** 3


35 The diagram shows a battery connected to a $0.50\,\Omega$ resistor and an ammeter. The reading on the ammeter is $0.20\,A$.

What is the potential difference (p.d.) across the resistor?

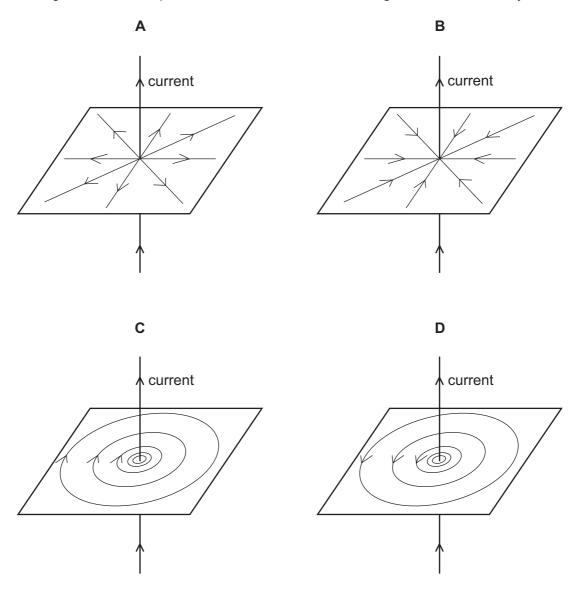
- **A** 0.10 V
- **B** 0.40 V
- **C** 0.70 V
- **D** 2.5 V

36 The diagram shows a circuit containing two resistors of resistance *R* and 2*R* and two ammeters X and Y.


Which ammeter shows the larger reading and what is the combined resistance of the two resistors?

	ammeter with larger reading	combined resistance
Α	×	less than <i>R</i>
В	X	more than 2 <i>R</i>
С	Y	less than <i>R</i>
D	Y	more than 2 <i>R</i>

37 An electrician has a box of identical fuses that do not have their rating marked on them.


They decide to test one of the fuses to determine its rating by gradually increasing the current in the fuse until it blows.

Which diagram shows a fuse connected in a suitable circuit?

38 The diagrams show patterns around a wire that is carrying a current in the direction shown.

Which diagram shows the pattern and the direction of the magnetic field caused by the current?

39 A nucleus has atomic number *Z* and mass number *A*.

What is equal to the value of A - Z?

- A the number of electrons orbiting the nucleus
- **B** the number of neutrons in the nucleus
- **C** the number of nucleons in the nucleus
- **D** the number of protons in the nucleus

40 A radioactive isotope emits only alpha (α)-particles.

A sample of the isotope emits 2000 α -particles per second.

After 30 minutes, the sample emits 250 α -particles per second.

What is the half-life of the isotope?

- A 7.5 minutes
- **B** 10 minutes
- C 15 minutes
- **D** 30 minutes

BLANK PAGE

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.

The Periodic Table of Elements

	=>	2 T	helium	4	10	Ne	neon 20	18	Ā	argon 40	36	궃	krypton 84	54	Xe	xenon 131	98	R	radon	118	Og	oganesson -
					6	ш	fluorine 19	17	Cl	chlorine 35.5	35	Ŗ	bromine 80	53	Н	iodine 127	85	Ą	astatine -	117	<u>s</u>	tennessine -
					80	0	oxygen 16	16	S	sulfur 32	34	Se	selenium 79	52	Те	tellurium 128	84	Ъо	polonium –	116	_	livermorium -
	>				7	Z	nitrogen 14	15	₾	phosphorus 31	33	As	arsenic 75	51	Sp	antimony 122	83	Ξ	bismuth 209	115	Mc	moscovium -
	≥				9	ပ	carbon 12	14	S	silicon 28	32	Ge	germanium 73	20	Sn	tin 119	82	Pb	lead 207	114	Εl	flerovium -
	≡				2	Ω	boron 11	13	Ρl	aluminium 27	31	Ga	gallium 70	49	In	indium 115	81	<i>1</i> L	thallium 204	113	R	nihonium –
											30	Zn	zinc 65	48	ည	cadmium 112	80	Нg	mercury 201	112	S	copernicium
											29	Cn	copper 64	47	Ag	silver 108	62	Au	gold 197	111	Rg	roentgenium -
Group											28	Z	nickel 59	46	Pd	palladium 106	78	귙	platinum 195	110	Ds	darmstadtium -
Ğ											27	ပိ	cobalt 59	45	格	rhodium 103	77	٦	iridium 192	109	Μţ	meitnerium -
		- 1	hydrogen	-							26	Fe	iron 56	4	Ru	ruthenium 101	9/	SO	osmium 190	108	Hs	hassium
								1			25	Mn	manganese 55	43	ည	technetium -	75	Re	rhenium 186	107	Bh	bohrium
					_	loqi	ass				24	ပ်	chromium 52	42	Mo	molybdenum 96	74	≯	tungsten 184	106	Sg	seaborgium -
			2	Ney	atomic number	atomic symbo	name relative atomic mass				23	>	vanadium 51	41	g	niobium 93	73	<u>n</u>	tantalum 181	105	В	dubnium -
						atc	rel				22	j	titanium 48	40	Zr	zirconium 91	72	茔	hafnium 178	104	弘	rutherfordium -
				r							21	လွ	scandium 45	39	>	yttrium 89	57-71	lanthanoids		89–103	actinoids	
	=				4	Be	beryllium 9	12	Mg	magnesium 24	20	Ca	calcium 40	38	ഗ്	strontium 88	26	Ba	barium 137	88	Ra	radium
	_				က	=	lithium 7	11	Na	sodium 23	19	¥	potassium 39	37	S S	rubidium 85	22	Cs	caesium 133	87	Ъ,	francium

71	n	Intetium	175	103	۲	lawrencium	I
70	ΥР	ytterbium	173	102	%	nobelium	I
69	=	thulium	169	101	Md	mendelevium	I
89	L L	erbinm	167	100	Fm	ferminm	I
29	e F	holmium	165	66	Es	einsteinium	I
99	Ś	dysprosium	163	86	ర్	califomium	I
65	q 	terbium	159	26	ă	berkelium	I
64	D C	gadolinium	157	96	Cm	curium	I
63	Εn	europium	152	98	Am	americium	I
62	Sm	samarium	150	94	Pn	plutonium	ı
19	T	promethium	1	93	Δ	neptunium	1
09	D Z	neodymium	144	92	\supset	uranium	238
29	ŗ	praseodymium	141	91	Ра	protactinium	231
58	Če C	cerium	140	06	T	thorium	232
22	g	lanthanum	139	88	Ac	actinium	ı

lanthanoids

actinoids

The volume of one mole of any gas is $24\,\mathrm{dm^3}$ at room temperature and pressure (r.t.p.).