www.PapaCambridge.com

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

International General Certificate of Secondary Education

MARK SCHEME for the May/June 2012 question paper for the guidance of teachers

0442 CO-ORDINATED SCIENCES (DOUBLE AWARD) (US)

0442/33

Paper 3 (Extended Theory), maximum raw mark 120

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2012 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

			_	my.	
	Paç	ge 2		Syllabus	
			IGCSE – May/June 2012	0442	
1	(a)	(i)	argentite and galena (or formula or chemical name);	alth	1
	((ii)	scheelite (or formula or chemical name);	Syllabus 0442 PARTOLINA COMMITTER CO	'de
	(b)	(i)	germanium ; four outer electrons so in Group IV ; four shells so in fourth period ;		[3]
	((ii)			
			H Q H (does not have to be	dots and crosses)	
			at least one shared pair of electrons ; four shared pairs giving QH ₄ ;		
			no extraneous electrons ;		[3]
	(iii)	$QO_2 + 2H_2 \rightarrow Q + 2H_2O$;; (balanced marked dependent on correct formulae)		[2]
				[Total:	10]
2		mag e.m bru	oil/wire is moving in magnetic field/changing magnetic f agnetic force; m.f/voltage/current is, induced/produced (to light lamp); ushes/slip rings, form electrical connection;	field/cuts lines of	
		sto	op connecting wires getting twisted;		[4]

(b) heat absorbed from athlete's body/heat transferred from body to sweat some molecules move faster than others/(kinetic) energy of the water molecules increases;

more energetic/faster molecules escape/leave the surface/break bonds/forces of attraction;

(average) energy (remaining) particles goes down;

[max 2]

[Total: 6]

Dogo 2	Mark Cahama, Tagahara' yaraian	Syllabus	-
Page 3	Mark Scheme: Teachers' version	Syllabus	
	IGCSE – May/June 2012	0442	

- (a) (i) greatest activity/optimum pH at pH 6.5/between 6 and 7; no activity, at/below, pH 4 AND at/above, pH 9;
 - (ii) pH changes the shape of the enzyme (molecule); changes shape of active site; so substrate can no longer fit into it;

(iii) curve of similar shape with peak at pH 4 or below;

[1]

(iv) sodium hydrogencarbonate neutralises/reacts with the acid; so pH rises (above optimum for enzyme);

[2]

(b) break down/digest, proteins;

to amino acids;

(amino acids) can be absorbed/can be taken into the blood/can pass through the wall of the gut/diffuse into cells;

[3]

- (c) (i) A capillary;
 - lacteal;

[2]

(ii) increase surface area;

in the small intestine/duodenum/ileum;

for absorption;

amino acids/glucose, absorbed into capillaries;

fats/fatty acids/glycerol, absorbed into lacteal;

[max 3]

[Total: 15]

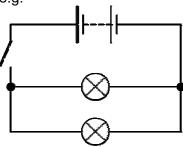
(a) (i) molecules collide with tyre wall;

force exerted causing pressure;

[2]

(ii) they move faster/have more kinetic energy;

[1]


[2]

(iii) particles collide with wall more often;

collisions, are harder/faster/have more energy;

(b) symbols correct and all complete in complete circuit; lamps in parallel and switch operates both lamps;

e.g.

[2]

Page 4				Mark Scheme: Teachers' version Syllabus						l r		
	raye 4			ivia		ie: Teacr - May/Ju		NOII	3	0442	9	By Control
	(c) KE = ½ mv m = (2 × 1				= 2 × KE	/ v ² ;				· · · · -		DaCambridge
	(d)	mass increases so KE/momentum increases; greater force needed (to reduce momentum)/longer braking time/distance needed (to reduce KE); (accept reverse arguments)						[2]				
	(e)	e) force = mass × acceleration; acceleration = 1500/1200 = 1.25 m/s ² ;					[2]					
												[Total: 13]
5	(a)	(i)		aturated mo le bonds ;	lecule co	ntains do	ouble/mul	tiple bond	OR sa	turated h	nas <u>only</u>	[1]
		(ii)	if un	bromine (s saturated o w potassiu	olour char	•	•					[2]
	(b)	(i)	poin	nolecular s t increases nes have lo	;						boiling	[2]
		(ii)	betw so m	molecular s veen molec nore (heat) cept reverse	ules increa energy ne	ase ; eded to s	,		`		•	[2]
					_	,						[Total: 7]
6	(a)			s XX and m g contains a			and each	sperm con	ntains e	ither X oi	r Y ;	[2]
	(b)			luce the ter e to figures	•			•	-			[2]
	(c)	(i)	edge	e of forest;								[1]
		(ii) open sand is hotter so produced more females/OR in forest lower so produced more males; reference to above or below 29°C; low vegetation is very close to 29°C and so produced approximately equal males and females;				[max 2]						

Page 5		5	Mark Scheme: Teachers' version	Syllabus	r	
	90 0			IGCSE – May/June 2012	0442	Doc
	so more female turtles/fev			ation will result in hotter sand/more open sand/mor female turtles/fewer males produced ; ght make breeding difficult/might reduce number o number of eggs laid ;	re hot sand ; f young born or might	DaCambridge [max
	(e)	refe	erence	bon dioxide in the atmosphere/less absorption of ce to global warming/effects of global warming/climbetween CO ₂ and seawater making it more acidic;		
				gen in the atmosphere ; e to possible harmful effects relating to respiration/l	ess to breathe ;	
				ots to hold soil in place/fewer leaves to protect from sion/risk of landslide ;	rain ;	
				es to absorb rain water ; oding ;		
		(an	y two	pairs)		[max 4]
						[Total: 13]
7	(a)	(i)	work 55 (:	ring; £2)s;		[2]
		(ii)		ains two fewer protons <u>and</u> two fewer neutrons ; nged to, polonium/atom with 84 protons (in nucleus);	[2]
		(iii)	-	a particles contain 2 protons but no electrons ; efore positively charged ;		[2]
	(b)	(i)	alum gam	radiation passes through paper/thin aluminium buninium or (thin) lead; ma radiation able to pass through aluminium and the nick lead/concrete;		[2]
		(ii)	the e	electrons are knocked out of/removed/lost from the	atom;	[1]
	(c)	dist	ance	between two waves ; between identical points on two successive waves n on diagram)	;	[2]

[Total: 11]

	D 0		0.11.1	
	Page 6	Mark Scheme: Teachers' version	Syllabus	8
		IGCSE – May/June 2012	0442	700
3		(molecules) hydrogen (atoms) are bonded to oxygixture only like atoms are bonded ;	gen (atoms) ;	Candidition
		the H:O ratio is 2:1/formula is H ₂ O ; ixture no fixed ratio ;		Se. COM
		reactive/puts out flame ;		

water unreactive/puts out flame; mixture burns/will react;

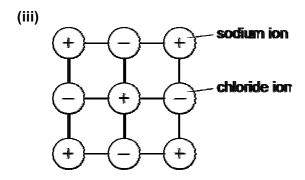
a mixture can be separated by physical means; a compound can only be separated by chemical means;

a compound contains different elements that are chemically bonded/combined; a mixture means two different substances that are not combined/chemically bonded;

the compound water is formed by chemical reaction;

the mixture of the elements hydrogen and oxygen is not formed by chemical reaction;

[max 2]


(any one pair for 2 marks but needs statement about compound and mixture)

(b) (i) silicon dioxide;

[1]

(ii) sodium chloride forms solution (so all passes through the filter); hexane is (also) a liquid (at room temperature) and (so also passes through filter);

[2]

ions/charged particles shown alternating; sodium and chloride correctly labelled; reasonable square shape;

[3]

[4]

(c) mix carbonate with acid;

keep adding carbonate until no more dissolves/reacts;

filter (and keep filtrate);

(warm the filtrate) to evaporate (some) (water);

[Total: 12]

Dana 7	Maris Calamas, Tarakansi wanaisa	Cullabus	(A: A
Page 7	Mark Scheme: Teachers' version	Syllabus	8
	IGCSE – May/June 2012	0442	123-

- 9 (a) label line to palisade cell;
 - (b) allow carbon dioxide to enter (the leaf); allow oxygen to leave; by diffusion;

[max 2]

[1]

[2]

- (c) (i) label line to any cell within mesophyll layers (not vein or air space);
 - (ii) magnesium needed to make/for chlorophyll/is in chlorophyll; chlorophyll is green/labelled part contains chloroplasts;

[Total: 6]

10 (a) transverse/longitudinal;

radio higher frequency;

radio has higher range of frequency;

different speed;

radio travels further;

radio can travel in a vacuum/sound cannot/needs a medium;

(2 marks for all three, 1 mark for one or two correct)

[max 2]

- (b) $v = f \times \lambda$; = $6 \times 10^{-7} \times 5 \times 10^{14} = 3 \times 10^8 \text{ m/s}$; [2]
- (c) rectangular block refraction towards normal on entry; and refraction away from normal on leaving; triangular block correct refraction and/or dispersion on entry;

correct refraction and/or dispersion on entry; correct refraction and/or dispersion on leaving; [4]

(d) speed = distance/time; = 500/1.5 = 333 m/s; [2]

[Total: 10]

Page 8	Mark Scheme: Teachers' version	Syllabus	2. D.
i age o	IGCSE – May/June 2012	0442	80
(ii) (exp	t. 2) ssium hydroxide is an alkali/contains hydroxide (io	ns) ;	A. PapaCambridge
so th	eaction occurred; nere was no change in temperature/no energy was per is less reactive than magnesium (so no reaction rept reverse argument)		[max 2]
because so energ	the temperature increased more quickly (than export the rate of reaction was greater/collisions more freely was transferred more quickly; powder has greater surface area;	•	[max 3]
(c) reference	e to electron loss as oxidation/gain as reduction;		[1]
(d) (i) 3.25	÷ 65 = 0.05 ;		[1]
idea	per is in excess) of 1:1 reacting ratio of Zn:Cu; greater number of moles of copper than zinc;		[2]
			[Total: 11]
oxygen;	al reactions that) break down glucose (molecules)/glucose reacts	with [2]
(b) (i) gluce	ose → alcohol/ethanol + carbon dioxide ;		[1]
yeas yeas	es dough/bread rise ; st uses sugars (from flour) ; st produces carbon dioxide ; bon dioxide) trapped in the dough ;		[max 3]

[Total: 6]

11

12