

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

www.PapaCambridge.com

CANDIDATE NAME					
CENTER NUMBER			CANDIDATE NUMBER		

CO-ORDINATED SCIENCES (DOUBLE)(US)

0442/33

Paper 3 (Extended)

May/June 2012

2 hours

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Center number, candidate number and name on all the work you hand in. Write in dark blue or black pen.

You may use a soft pencil for any diagrams, graphs, tables or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO **NOT** WRITE IN ANY BARCODES.

Answer all questions.

A copy of the Periodic Table is printed on page 28.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

For Exam	iner's Use
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
Total	

This document consists of 27 printed pages and 1 blank page.

1 (a) Most atoms of metallic elements found in the Earth's crust exist in compounds ores which are contained in rocks.

www.PapaCambridge.com The chemical formulae of some metal compounds found in ores, together with the names of the ores, are shown below.

argentite	Ag_2S
chromite	$FeCr_2O_4$
galena	PbS

		•	
/:\	A hinamy compound is one the	st oon	٠.;

CaWO₄

scheelite

(i)	A binary compound is one that contains only two different elements.	
	State which of the compounds in the list above are binary compounds.	
		[1]
(ii)	State the ore from which the metallic element tungsten could be extracted.	
		[1]

(b) Fig. 1.1 shows an incomplete diagram of an atom of an element Q in which only the outer shell electrons are shown.

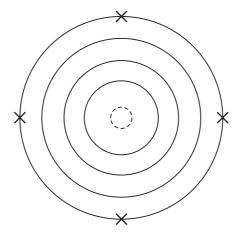


Fig. 1.1

(i) Name element Q and explain your answer. name

	www.		
	3		
(ii)	One atom of element Q combines with hydrogen atoms to form complexules.	Cann	For iner's
	Draw a diagram of one molecule of this compound to show how the bond electrons are arranged.	ling	For iner's
		[3]	
(iii)	Element ${\bf Q}$ may be extracted from its oxide, ${\rm QO_2}$, in a reaction with hydrogen, In this reaction, hydrogen removes the oxygen from the oxide and forms water.	H ₂ .	
	Suggest a balanced symbol equation for this reaction.		
		[2]	

www.PapaCambridge.com

He uses the bicycle to turn a generator that lights a lamp as he pedals. Fig. 2.1 shows the simple generator which he uses.

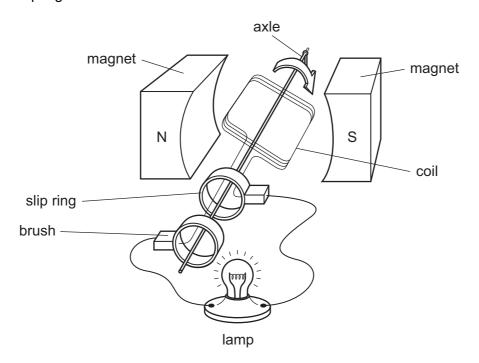


Fig. 2.1

description of what the slip rings and brushes do.

Explain how the rotating coil causes the lamp to light. Include in your explanation a

www.PapaCambridge.com **(b)** During his bicycle ride the athlete cools down by sweating. Describe and explain, in terms of the movement of water molecules, how evaporation cools down the athlete.

(a) Fig. 3.1 shows the effect of pH on the activity of an enzyme. 3

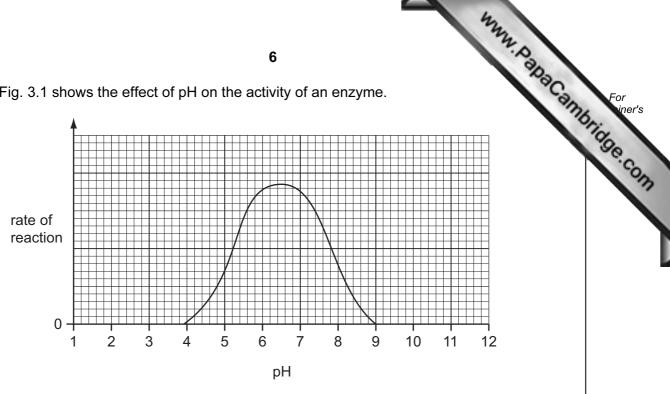


Fig. 3.1

(i)	Describe the effect of pH on the activity of this enzyme.
	[2]
(ii)	Explain why pH affects the enzyme in this way.
	[2]
iii)	A protease enzyme works in the human stomach, where hydrochloric acid is secreted. This enzyme is adapted to work best in these conditions.
	On Fig. 3.1, sketch a curve to show how pH affects the activity of this protease enzyme. [1]
iv)	After the food has been in the stomach for a while, it passes into the duodenum. Pancreatic juice, which contains sodium hydrogencarbonate, is mixed with the food in the duodenum.
	Explain why the protease enzyme stops working when it enters the duodenum.
	[2]

[3]

	For
۶.	iner's
•	4
	0
١	00
1	.0
	-O.

4	(a)		ar tire is inflated using a footpump. The mechanic using the footpump notice pump gets hot.
		(i)	Explain how the air molecules in the tire exert a pressure on the wall of the tire.
			101
			[2]
		(ii)	The air going into the tire is warmed up by the pumping.
			Describe what happens to the motion of the air molecules as the air warms up.
			[1]
		(iii)	When the air in the tire becomes hotter, the pressure rises.
			Explain in terms of the motion of the air molecules why the pressure rises.
			[2]
	(b)		brake lights light up when the driver presses on the footbrake pedal. The pedals as a switch

Draw a circuit diagram including a battery to show how this works. Design your circuit so that if one brake light fails, the other still lights up.

e more For iner's 10 m/s.

(c)	A car	which	is	moving	has	kinetic	energy.	The	faster	а	car	goes,	the	more
	energ	y it has												

The kinetic energy of the car is $1\,120\,000\,J$ when the car is traveling at $40\,m/s$.

Calculate the mass of the car.

State the formula that you use and show your working.

formula used

working

(d)	A driver is accompanied by four other passengers and their heavy luggage.	
	Explain how the addition of the passengers and luggage affects the braking of the compared to when the driver is alone in the car.	car
		[2]

(e) A car is moving along a road. The mass of the car is 1200 kg and the resultant force acting on it is 1500 N.

Calculate the acceleration of the car.

State the formula that you use and show your working.

formula used

working

[2
[4

[2]

5 In hydrocarbons, carbon atoms are joined in chains of various lengths.

Table 5.1 shows information about some hydrocarbons.

Table 5.1

alkanes		
molecular structure	boiling point/°C	
H H H—C—C—H H H	-87	
H H H H—C—C—C—H H H H	-42	
H H H H	0	
H H H H H 	36	

10	MM. PARACAI.
hains of various lengths.	Mac
ocarbons.	
5.1	`
alkenes	
molecular structure	boiling point/°C
H H C==C H H H	-104
H H H 	-47
H H H H	-6
H H H H H 	30

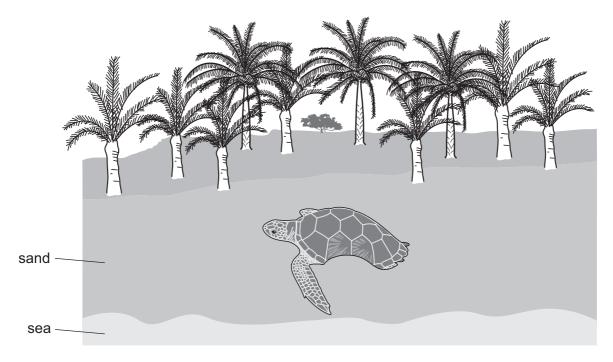
- (a) Table 5.1 contains examples of both saturated and unsaturated hydrocarbons.
 - (i) State how the bonding in an unsaturated hydrocarbon molecule differs from that in a saturated hydrocarbon molecule.

	 ••••••
	F#1

(ii) Describe a chemical test that is used to show whether a hydrocarbon is saturated or unsaturated.

(b) The alkanes in Table 5.1 occur naturally in deposits of petroleum (crude oil) and gas.

www.PapaCambridge.com Petroleum is brought to an oil refinery where the mixture of alkanes is separated into simpler mixtures by fractional distillation. Some of the simpler mixtures are processed further to produce alkenes.


(i)	Fractional distillation relies on differences in the boiling points of hydrocarbons.
	State two trends shown in the boiling points of the alkanes and alkenes in Table 5.1.
	trend 1
	trend 2
	[2]
(ii)	Explain, in terms of forces between molecules, the trend in the boiling points of the alkanes in Table 5.1.
	[2]

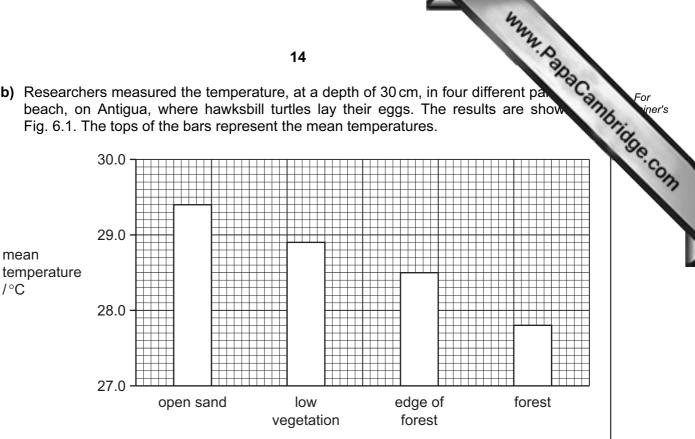
BLANK PAGE

www.PapaCambridge.com

13 Describe how sex is inherited in mammals.	MANA, DallaiCan, For iner's
	3e com
	[2]

Hawksbill turtles are an endangered species. Adults spend most of their lives at sea, but the females come ashore to lay their eggs. They bury their eggs in nests in the sand, either on a beach or in the vegetation that grows just behind the beach.

Unlike mammals, the sex of hawksbill turtles is determined by the temperature of the sand in which the eggs develop.


- At 29 °C, equal numbers of males and females develop.
- Higher temperatures produce more females.
- Lower temperatures produce more males.

There is concern that in recent years too many female turtles have been produced, and not enough males.

(b) Researchers measured the temperature, at a depth of 30 cm, in four different part beach, on Antigua, where hawksbill turtles lay their eggs. The results are show Fig. 6.1. The tops of the bars represent the mean temperatures.

mean

/°C

part of beach

Fig. 6.1

With reference to of the sand.	o Fig. 6.1, describe	the effect of the p	presence of trees on	the temperature
				[2]

(c) The researchers counted the proportion of male and female turtles hatching from nests in the four different parts of the beach. The results are shown in Table 6.1.

Table 6.1

part of beach	nests producing more males than females	nests producing more females than males	nests producing equal numbers of females and males
open sand	0	16	0
low vegetation	31	24	6
edge of forest	61	0	11
in forest	36	0	0

		The state of the s
		15 A. D.
	(i)	State the part of the beach in which most female hawksbill turtles chose to leegs. [1] Use the information in Fig. 6.1 to explain the results shown in Table 6.1.
		[1]
	(ii)	Use the information in Fig. 6.1 to explain the results shown in Table 6.1.
		[2]
d)		rism is an important industry in Antigua. The vegetation on many beaches has n cut down to make the beaches more attractive to tourists.
		n reference to the results of this research, suggest how deforestation of beaches ld affect hawksbill turtle populations.
		[2]
(e)		scribe two harmful effects to the environment, other than extinction of species, that y result from deforestation.
	1 .	
	2 .	
		[4]

7 (a) The isotope radon-220 is radioactive. A sample was investigated to find its half-in activity of the isotope was measured every minute for 6 minutes. The results are shadely in Fig. 7.1.

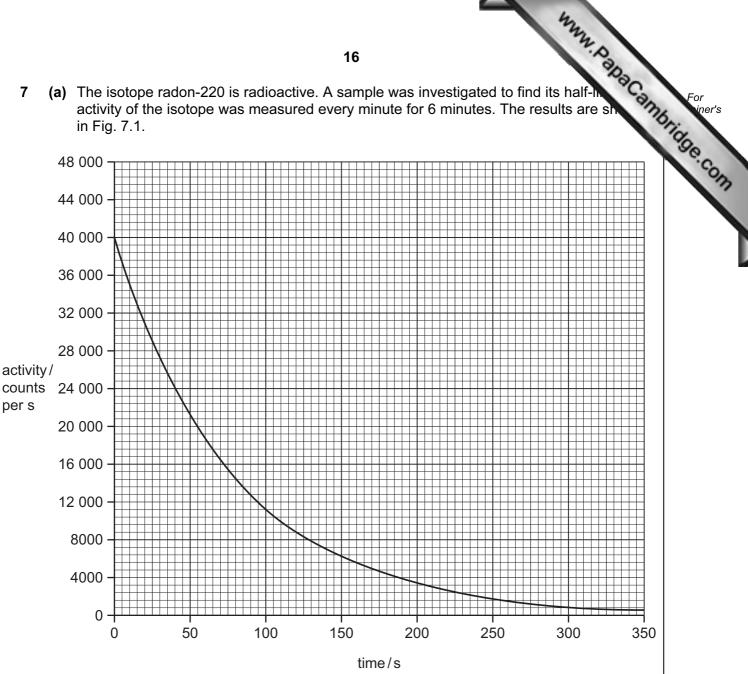


Fig. 7.1

(i) Use Fig. 7.1 to calculate the half-life of the isotope.

S	Show your working on the graph.	
		 [2]

(ii)	Describe the differences in the structure of the nucleus of a radon-220 atom be and after the emission of an alpha particle.	fore
		[2]

	(iii)	Explain why alpha radiation is affected by an electric field.
		[2]
(b)		three types of nuclear radiation are alpha, beta and gamma. They can be identified heir different penetrating powers. Alpha radiation cannot penetrate paper.
	(i)	Explain how you could identify beta and gamma radiations by their penetrating powers.
		beta radiation
		gamma radiation
		[2]
	(ii)	Explain how radiation ionizes an atom to make a positive ion.
		[1]
(c)	Gar	nma radiation is an electromagnetic wave with a short wavelength.
		lain the meaning of the term wavelength. You may draw a diagram if it helps you to wer this question.
		[0]
		[2]

For iner's

8	(a)	Wa	ter is a compound	d which contains the e	lements hydrogen and	d oxygen.	
				ence, other than physic ments hydrogen and o		e compound water an	-
						[2]	
	(b)		ole 8.1 shows info n water.	ormation about water a	and three compounds	that can form mixtures	
				Table 8	.1		
			compound	melting point/°C	boiling point/°C	solubility in water	
			water	0	100	_	
		sc	odium chloride	801	1413	soluble	
		s	ilicon dioxide	1650	2230	insoluble	
			hexane	– 95	69	insoluble	
		(i)	State which con by filtration.	npound in Table 8.1 c	ould be separated fro	m a mixture with water	
						[1]	
		(ii)	Explain why the water by filtratio		ls cannot be separat	ed from a mixture with	

[2]

www.papaCambridge.com (iii) A student looked at a magnified image of some sodium chloride crystals this microscope.

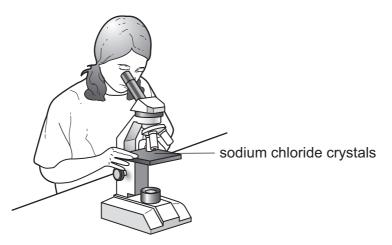


Fig. 8.1 shows what she observed through the microscope.

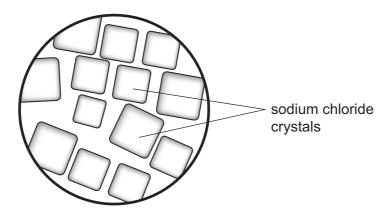


Fig. 8.1

Draw a simple diagram of the structure of sodium chloride.

Your diagram should clearly show the nature and arrangement of the particles involved and should show why the crystals have the shape shown in Fig. 8.1.

	the state of the s	
	20	
(c)	The student is asked to use the reaction between the insoluble compound carbonate and dilute sulfuric acid to make some crystals of copper sulfate. Describe the main steps of a method the student should use to carry out this task. You may draw labeled diagrams if it helps you to answer this question.	For iner's
	Describe the main steps of a method the student should use to carry out this task.	Tage
	You may draw labeled diagrams if it helps you to answer this question.	COM
		_
	[4]	

Fig. 9.1 is a photograph of a cross-section of a leaf, taken through a microscope. 9

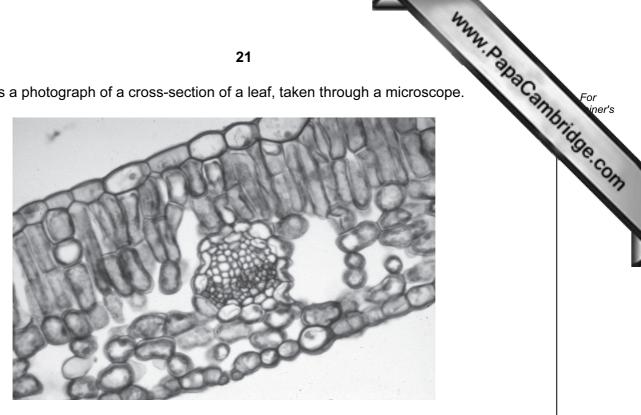


Fig. 9.1

(a)	On	Fig. 9.1, use a label line to label a palisade cell.	[1]
(b)	The	ere are small gaps in the lower surface of the leaf, called stomata.	
	Exp	plain the role of stomata in photosynthesis.	
			••••
		[[2]
(c)	If a	plant is deficient in magnesium, its leaves lose their green color.	
	(i)	On Fig. 9.1, use a label line and the letter A to indicate a part of the leaf that would lose its green color.	ıld [1]
	(ii)	Explain why the part you have labeled would lose its green color.	
			 21

		The state of the s
		22
10	(a)	Radio waves are electromagnetic waves. Sound waves are not.
		State three other ways in which radio waves differ from sound waves.
		Radio waves are electromagnetic waves. Sound waves are not. State three other ways in which radio waves differ from sound waves.
		2
		3
		[2]
	(b)	Visible light is another type of electromagnetic wave.
		The frequency of green light is 5 x 10 ¹⁴ Hz.
		The wavelength of green light is 6 x 10 ⁻⁷ m.
		Calculate the speed of green light.
		State the formula that you use and show your working.
		formula used
		working
		working
		701
		[2]

(c) A thin beam of white light is shone onto two glass blocks.

www.PapaCambridge.com On Fig. 10.1, complete the diagrams to show what happens to the light passin through each block and after it emerges from the block.

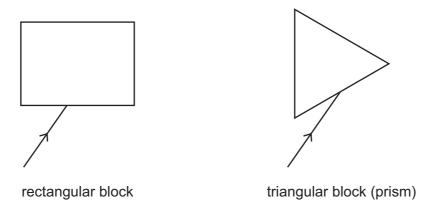
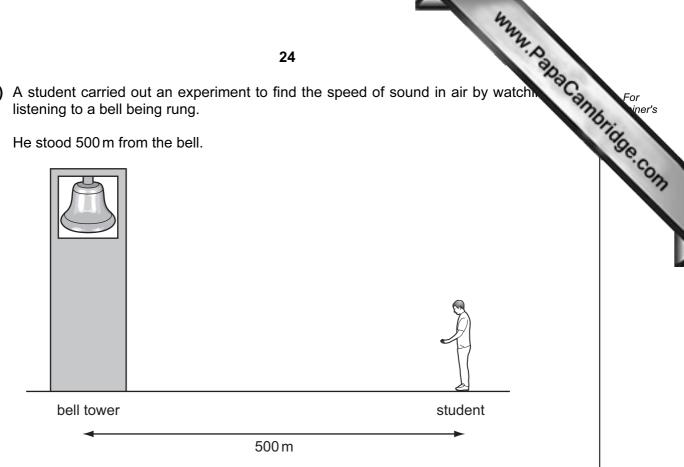



Fig. 10.1

[4]

(d) A student carried out an experiment to find the speed of sound in air by watch. listening to a bell being rung.

He stood 500 m from the bell.

The sound took 1.5 s to travel from the bell to the student.

Calculate the speed of sound.

State the formula used and show your working.

formula used

working

-				•	•											 			 			L	_
			_				_	_					_	_	_			_		_		L	_

www.PapaCambridge.com 11 Fig. 11.1 shows apparatus a student used to investigate temperature changes that o during chemical reactions.

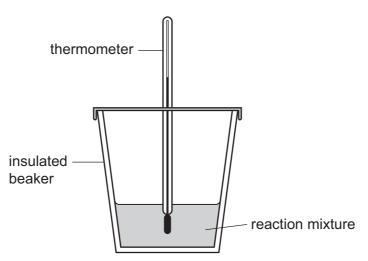


Fig. 11.1

The student added reactants to the insulated beaker and stirred the mixture. She recorded the final temperature of each mixture.

At the start of each experiment, the temperature of the reactants was 22 °C.

Table 11.1 contains the results the student obtained.

Table 11.1

experiment	reactant A	reactant B	final temperature/°C
1	dilute hydrochloric acid	sodium hydrogencarbonate	16
2	dilute hydrochloric acid	potassium hydroxide solution	26
3	magnesium	copper sulfate solution	43
4	copper	magnesium sulfate solution	22

a)	(i)	Explain which experiment, 1, 2, 3 or 4, was a reaction involving an alkali.	
		experiment	
		explanation	
			[1]
	(ii)	State and explain which experiment, 1, 2, 3 or 4, was an endothermic reaction.	
		experiment	
		explanation	
			[1]

	(iii)	Suggest and explain a reason for the result obtained in experiment 4 .	or iner's
		Suggest and explain a reason for the result obtained in experiment 4.	C
		[2]	OTH
b)		e student carried out two further experiments, 5 and 6 , to investigate the reaction tween zinc and copper sulfate solution.	
		experiment 5 the student used 3.25 g of zinc powder, and in experiment 6 she used ingle piece of zinc which also had a mass of 3.25 g.	
		e student observed the readings on the thermometer over five minutes during each periment.	
		edict and explain any difference in the way that the temperature would change tween experiments 5 and 6 .	
		[3]	
c)		the reaction in (b) , zinc atoms react with copper ions. This chemical change may be presented by the symbolic equation below.	
		$Zn(s) + Cu^{2+}(aq) \rightarrow Zn^{2+}(aq) + Cu(s)$	
		plain, in terms of the transfer of electrons, why this reaction is an example of dation and reduction (redox).	
		[1]	

(d) In both of the experiments in (b) the solution at the start of the experiment co. 0.08 moles of copper ions, and the zinc had a mass of 3.25 g.

www.PapaCambridge.com (i) Calculate the number of moles of zinc that are contained in 3.25 g. The relative atomic mass (A_r) of zinc is 65.

Show your working.

			[1]
		(ii)	Use your answer to (i) and the equation in (c) to explain whether or not the amount of copper ions is sufficient to react with all of the zinc.
			[2]
12	(a)	Def	ine the term <i>respiration</i> .
			[2]
	(b)	(i)	State the word equation for anaerobic respiration in yeast.
			[1]
		(ii)	Describe how anaerobic respiration in yeast is used in bread-making.
			[3]

The Periodic Table of the Elements DATA SHEET

	0	Helium	20 Ne on	40 Ar Argon	84 Kr ypton	131 Xe Xenon	Radon 86		175 Lu Lutetium		
		- ×	10	18	36	54					
	\		19 F Fluorine	35.5 C 1 Chlorine	80 Br Bromine 35		At Astatine 85		Yb Ytterbium		
	IN		16 O Oxygen 8	32 S Sulfur	79 Se Selenium 34	Tellurium 52	Po Polonium 84		169 Ta		
	Λ		14 X Nitrogen 7	31 P Phosphorus	75 AS Arsenic 33	122 Sb Antimony 51	209 Bi Bismuth		167 Er Erbium		
	\wedge				12 C Carbon 6	28 Si icon	73 Ge Germanium	Sn Tin 50	207 Pb Lead 82		165 Ho Holmium
	=		11 B Boron 5	27 A1 Auminum	70 Ga Gallium 31	115 In Indium 49	204 T 1 Thallium		162 Dy Dysprosium		
					65 Zn Zinc 30	112 Cd Cadmium 48	201 Hg Mercury 80		159 Tb		
					64 Copper	108 Ag Silver 47	197 Au Gold		157 Gd Gadolinium		
Group					59 Nickel	106 Pd Palladium 46	195 Pt Platinum 78		152 Eu Europium		
Gre					59 Co Cobalt	103 Rh Rhodium 45	192 Ir Iridium		Samarium		
		1 Hydrogen			56 Fe Iron	Ru Ruthenium 44	190 Os Osmium 76		Pm		
					Mn Manganese	Tc Technetium 43	186 Re Rhenium 75		144 Neodymium		
					52 Cr Chromium 24	96 Mo Molybdenum 42	184 W Tungsten 74		141 Praseodymium		
					51 Vanadium 23	93 Nb Niobium	181 Ta Taranum		140 Cerium		
					48 T	2r Zrconium 40	178 Hf Hafnium 72				
					45 Sc Scandium 21	89 ≺ Yttrium	139 La Lanthanum 57 *	227 Ac Actinium 89	series eries		
	=		9 Be Beryllium	24 Mg Magnesium	40 Ca Calcium	Sr Strontium	137 Ba Barium 56	226 Ra Radium 88	*58-71 Lanthanoid series 190-103 Actinoid series		
	_		7 L.i Lithium 3	23 Na Sodium	39 K Potassium 19	Rb Rubidium 37	133 Cs Caesium 55	Fr Francium 87	*58-71 L ₂		

www.papaCambridge.com F Hullium Mo **E**rbium Fm **H**olmium Es Californium 98 2 ರ Terbium ਲ Curium S S Am П SB Pu Ра Cerium 232 **Th** 28 90 b = proton (atomic) number a = relative atomic mass

X = atomic symbol

Key

2

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.