www.PapaCambridge.com

CAMBRIDGE INTERNATIONAL EXAMINATIONS

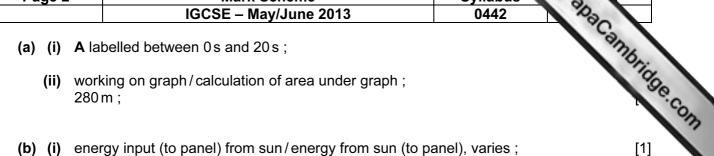
International General Certificate of Secondary Education

MARK SCHEME for the May/June 2013 series

0442 CO-ORDINATED SCIENCES (DOUBLE AWARD) (US)

0442/33 Paper 3 (Extended Theory), maximum raw mark 120

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.


Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

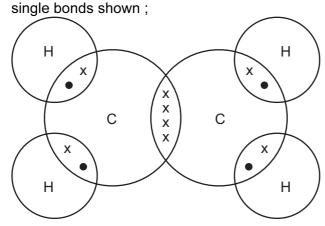
Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	2
	IGCSE – May/June 2013	0442	100

- (a) (i) A labelled between 0s and 20s;
 - (ii) working on graph/calculation of area under graph; 280 m;

(iv) (kinetic energy =)
$$\frac{1}{2}$$
 mv²;
= $\frac{1}{2} \times 750 \times 7 \times 7 = 18375$ J; [2]


[Total: 12]

[1]

2 (a) fractional distillation;

(b) (i) C_8H_{18} ; total number of each type of atom must be same on both sides of equation; [2]

(ii) double bond shown;

(max 1 mark if symbols missing or incorrect)

(c) (i)
$$480 \div 24\,000$$
;
= 0.02;

[2]

Page 3		3	Mark Scheme	Syllabus	r	
	1 age o		,	IGCSE – May/June 2013	0442	Do.
		(ii)	M _r e	ber of moles of ethene used = $0.02 \div 2 = 0.01$; thene = $(12 \times 2) + (1 \times 4) = 28$; s of 0.01 moles ethene = $28 \times 0.01 = 0.28 g$;		Dal Cambridge
3	(a)	(i)	cher	mical (energy); (accept: potential)		[1]
		(ii)	1 (%	o);		[1]
		(iii)	as h mov not a	iration ; eat ; ement/kinetic ; all organisms eaten/not all parts of organisms eater all food digested/some lost in faeces ;	ı;	[max 2]
	((b)	so le trees prod	photosynthesis (as fewer trees); ess carbon dioxide removed/used; s burned; lucing carbon dioxide; e carbon dioxide in atmosphere contributes to gre	enhouse effect/traps	[max 3] [Total: 7]
4	(a)	(i)		+ $2HCl \rightarrow MgCl_2 + H_2;;;$ S ; RHS ; and balanced ;)		[3]
		(ii)	(hea	energy has been transferred / released into the mix at released by) exothermic reaction; mical energy transferred into heat energy; lucts have lower chemical energy content than react		[max 2]
	(b)	(i)	2.5 ;			[1]
		(ii)	if ter reac if sp	nigher the temperature the higher the rate; mperature increases then speed/KE of molecules in tions occur when molecules collide; eed increases collision frequency increases; collision energy increases;	ncreases ;	
				ch leads to greater chance of reaction ;		[max 3]
						[Total: 9]
5	(a)	(i)	3×1	0 ⁵ (km/s) ;		[1]
		(ii)	infra	ı-red ;		[1]

[1]

(iii) wavelength/frequency;

Page 4			Mark Scheme	Syllabus	2.D
	i age +		IGCSE – May/June 2013	0442	B
(b)	alph ionis cand the	a rac satior cer o dose	na radiation and beta radiation pass easily through the diation damages cells in a very localised part of the londoes not always kill cells – sometimes it causes the cours when a large number of cells are killed of radiation received depends on the length of expensives correct = 2 marks, four boxes correct = 1 marks	osure	A. Pana Cambridge
(c)		-life = king ;	= 90 (minutes) ;		[2]
(d)	` '	•	nium –210 (no mark) est/longest half-life ;		[1]
		•	nium and radon, (no mark) a is most ionising/both emit alpha ;		[1]
(e)	expl A ar B ne	injed lanati nd C eeds	ct into a person as a medical tracer; ion need long half-lives to work; short half-life so that it does not remain in body/ow enough so that it can be monitored;	tte ;	[max 3] [Total: 12]
(a)	arro arro arro	w on w on w on	A pointing downwards B pointing downwards C pointing upwards D pointing upwards correct for two marks, two or three correct for one m	eark) ;;	[2]
(b)	(i)	urea	/carbon dioxide ;		[1]
	` ,	nam	er; from – amino acid/glucose/fatty acid/glycerol/na ed vitamin; podies;	med relevant ele	ement/ [max 2]
(c)		by h	ed blood cells ; aemoglobin ; bined with haemoglobin / as oxyhaemoglobin ;		[max 2]

6

	Page 5		;	Mark Scheme	Syllabus	· A
				IGCSE – May/June 2013	0442	80
		(ii)	shor more grea idea com	rence to diffusion; ter distance to travel (therefore less time taken (for e surface area (therefore more can move across at atter, rate of more, blood flow (so oxygen taken away that this maintains diffusion gradient; parative use of figures, e.g. distance across surface than in placenta;		mes [max 4]
7	(a)	SOC	lium a	nreactive/stable enough to exist as metal; and magnesium react easily with, non-metals e.g. or eneral reactivity mark and 1 mark for relevant extra c		[2]
	(b)	(i)	alloy	<i>'</i> ;		[1]
		(ii)	mak	ler toms disrupt layers of copper atoms ; ing it more difficult for layers to move over each e energy required to make layers slip ;	n other/which me	eans [2]
		(iii) (i)	or copp	ortions of tin and copper can vary/no fixed chemical pound as of different elements are bonded; e properties of bronze are different from either tin or on/electrode S is a cathode/negatively charged; ttracts positive copper ions; per ions gain electrons; per ions gain two electrons/are discharged/convertioner atoms bond together/stick to steel spoon;	r copper ;	[max 1] oms ; [max 4]
		(ii)		gen/carbon dioxide/carbon monoxide;		[1]
		. ,	weig decr OR	the electrode before and after the process; rease in mass provides the required evidence; micrometer to find/measure electrode thickness	before and after	

decrease in thickness provides the required evidence;

[Total: 13]

[max 2]

Page 6	Mark Scheme	Syllabus	
	IGCSE – May/June 2013	0442	

		10002 11149/04/10 2010	80
8	(a) (i	i) (energy =) power × time; 1100 × 40 × 60; = 2640000 (J);	acambride
	(ii		
	(b) (i	i) $(R =) V/I$; $R = 220/3 = 73 \Omega$;	[2]
	(ii	i) charge = current × time ; = 3 × 12 × 60 = 2160 C ;	[2]
	(c) (i	i) liquid particles touching and similar size; gas particles not touching; random arrangement for both;	[3]
	(ii	faster moving molecules; can do more work against attractive forces/can break bonds between them/ owtte; break free/separate turn into gas/leave liquid;	
		energy/heat (from surroundings) used for this;	[max 3]
			[Total: 15]
9	(a) (i	i) from the air ; by diffusion ; through stomata ;	[3]
	(ii	absorbed by root hairs ; by osmosis (into roots/xylem) ;	
		up xylem to leaves ; pulled up by transpiration ;	[max 3]
	(b) (i	breakdown of large molecules;so that they can be absorbed/become soluble;	[2]
	(i	i) enzymes ; proteases ;	
		trypsin/pepsin;	[max 2]

					32	
	Page 7		7	Mark Scheme	Syllabus	1
				IGCSE – May/June 2013	0442	8
	(c)	(i)	as a	control/to make sure the only variable was the sub-	stance used ; [1]	a Cambridge
		(ii)	they	moved away from the side containing the solution fr	rom the pitcher;	Tage
		(iii)	pitch	t crawl out) ;		
			avp	attracts insects ; ;		[max 3]
					Γ	Total: 15]
10	(a)	(i)	redu calc	2 from either part: uce acidity/increase pH/neutralise acids; ium carbonate reacts with/neutralises acids; ases nutrients from soil;		
			pota	ease plant nutrient levels/fertilises; essium compounds are essential for healthy plant gro tralises acids (if not credited above);	owth/increases yield ;	[max 3]
		(ii)		assium ion is K ⁺ /charges must balance ; arbonate is CO ₃ ²⁻ ;		[2]
	(b)	(i)	iron	;		[1]
		(ii)		gen and hydrogen too unreactive/react too slowly (velyst speeds up the reaction/allows the reaction to or	•	[max 1]
		(iii)	nitrio	c acid ;		[1]
						[Total: 8]
11	(a)	pea rate OR	ak bet e zerc	es up and then down again ; ween 30 and 45 °C ; o (by 60 °C or sensible figure) ;		
		ser	nsible	lown (including two straight lines) ; scale shown ;		
		cor	rect s	hape ending at zero ;		[max 3]
	(b)	(i)	skin	/brain/hypothalamus ;		[1]
		(ii)		ract/shiver ; ase heat ;		[2]

(iii) sensor/receptor detects a change from normal/example/owtte; brings about a response that returns factor towards normal/example;

[Total: 8]

[2]