CANDIDATE NAME

CENTER NUMBER

CO-ORDINATED SCIENCES (DOUBLE)(US)

0442/23
Paper 2 (Core)
October/November 2013

Candidates answer on the Question Paper.
No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Center number, candidate number and name on all the work you hand in.
Write in dark blue or black pen.
You may use a pencil for any diagrams or graphs.
Do not use staples, paper clips, glue or correction fluid.
DO NOT WRITE IN ANY BARCODES.

Answer all questions.

Electronic calculators may be used.
You may lose marks if you do not show your working or if you do not use appropriate units.
A copy of the Periodic Table is printed on page 28.

At the end of the examination, fasten all your work securely together.
The number of marks is given in brackets [] at the end of each question or part question.

This document consists of $\mathbf{2 8}$ printed pages.

1 Fig. 1.1 shows a root hair cell.

Fig. 1.1
(a) Use the letters \mathbf{A}, \mathbf{B} and \mathbf{C} to label these parts of the root hair cell in Fig. 1.1.

A the cell membrane
B the part that contains chromosomes
C a structure that is not present in animal cells
(b) Name two substances that are absorbed by root hair cells.

1 \qquad
2 \qquad
(c) Fig. 1.2 shows part of a plant stem from which the outer layer, including the has been removed.

Fig. 1.2
(i) State the function of phloem.
\qquad
\qquad
\qquad
(ii) Suggest why this treatment would cause the roots of the plant to die.
\qquad
\qquad
\qquad
\qquad

2 (a) Table 2.1 shows information about some chemical elements and their position Periodic Table.
iner's
Table 2.1

element	group number in the Periodic Table
oxygen	6
calcium	2
lithium	1
sulfur	6
fluorine	7

(i) State the noble (inert) gas that is in the same period of the Periodic Table as sulfur.
(ii) Select two elements from Table 2.1 whose atoms form ionic chemical bonds with each other and explain your answer.
and \qquad
explanation \qquad
\qquad
(b) Fig. 2.1 shows a diagram of an atom.

Fig. 2.1
(i) Name structure A in Fig. 2.1. .. [1]
(ii) State the proton number of the atom in Fig. 2.1.

Explain your answer briefly.
proton number \qquad
explanation \qquad
(c) A student added excess acidified barium chloride solution to a solution of a magnesium compound to produce mixture \mathbf{W}.

Fig. 2.2 shows the procedure followed.

Fig. 2.2
(i) Suggest the full name of the magnesium compound in the original solution.
(ii) Describe briefly what the student should do to find the mass of the white precipitate in mixture \mathbf{W}.
\qquad
\qquad
\qquad
\qquad

3 (a) Fig. 3.1 shows a circuit used to measure the current passing through a resisto the voltage across it is changed.

Fig. 3.1
(i) Describe the purpose of component \mathbf{Z} in the circuit.
\qquad
(ii) The meters shown in the circuit give readings of 0.6 A and 8.0 V .

State which meter, \mathbf{X} or \mathbf{Y}, gives the reading of 0.6 A .
Explain your answer.
meter \qquad
explanation \qquad
\qquad
(iii) Calculate the resistance of resistor \mathbf{R}.

State the formula that you use and show your working.
formula
working
(b) Complete the sentences below using a word or phrase from the list. Each phrase can be used once, more than once or not at all.
decreases increases is zero stays the same

When the voltage across the resistor is reduced, the current through the resistor
\qquad .

When the voltage of the supply is reduced, the voltage across the resistor
\qquad .

When the voltage across the resistor is reduced, the resistance of the wire
\qquad .
(c) The resistance of a piece of wire depends on a number of variables such as the temperature of the wire and the material from which it is made.

State two other factors which affect the resistance of a piece of wire.

1 \qquad
2

4 Soya beans are an important crop in Brazil. Soya beans contain a lot of prote smaller quantities of starch and fat.
(a) Describe how you could test a sample of soya beans to find out if they contain fat.
\qquad
\qquad
\qquad
\qquad
(b) Explain why protein is an important part of a balanced diet.
\qquad
\qquad
\qquad
(c) When a person eats soya beans, the beans are chewed in the mouth.

Explain why this makes it easier for enzymes in the digestive system to digest the beans.
\qquad
\qquad
\qquad
(d) Raw soya beans contain substances that stop protease enzymes from working. Cooking destroys these substances.

Suggest how eating uncooked soya beans could prevent the absorption of some of the nutrients from them.
\qquad
\qquad
(e) Large areas of rainforest have been cleared in Brazil, to provide more land for soy beans.

Explain how cutting down the rainforest can harm the environment.
Explain how cutting down the rainforest can ham the environment.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

5 (a) A student placed four equally-sized pieces of different metals into colorless contained in four test-tubes $\mathbf{P}, \mathbf{Q}, \mathbf{R}$ and \mathbf{S}.

Fig. 5.1 shows what the student observed.

Fig. 5.1
(i) Suggest which of the test-tubes in Fig. 5.1 contained water to which a piece of iron was added.

Explain your answer.
test-tube
explanation \qquad
\qquad
\qquad
\qquad
(ii) The colorless liquid in test-tube \mathbf{R} was dilute hydrochloric acid.

Suggest the name of the metal that was added to test-tube \mathbf{R} and name the gas that was produced.
metal \qquad
gas
(iii) Test-tube \mathbf{P} contained the same concentration of dilute hydrochloric acid at the same temperature as test-tube \mathbf{R}.

Suggest the name of the metal that was added to test-tube \mathbf{P}.
(b) In the process of copper plating, a thin layer of copper is formed on the surfa metal object.

Fig. 5.2 shows the apparatus and materials that are needed to copper plate a metal key.

Fig. 5.2
Draw a diagram which shows how the apparatus and materials in Fig. 5.2 should be assembled so that the metal key will be copper plated.

6 (a) Fig. 6.1 gives information about the uses of different types of electromagnetic and their effects on living tissue.

Draw lines to link each electromagnetic wave with its effect on living tissue and its use. One has been completed as an example.

uses	type of radiation		effects on tissue
screening luggage	X-rays	activates sensitive cells in retina kills cancerous cells	
security marking	microwave		
satellite communication	ultra violet		heats water in tissues
seeing	visible light		causes tanning of skin

Fig. 6.1
(b) Electromagnetic waves are transverse waves. Water waves are also transverse.

Draw a diagram of a transverse wave on the axes below. Label the amplitude and one wavelength on your diagram.

Please turn over for Question 7.

7 Ball pythons (royal pythons) are snakes that are kept as pets in many parts of the wo

The color of a ball python is determined by its genes.
Some ball pythons are albino (white). This is caused by a recessive allele, a. The dominant allele, A, gives normal coloring.
(a) Complete Table 7.1 to show the possible genotypes and colors arising from this gene.

Table 7.1

genotype	color
AA	
$\mathbf{A a}$	normal
	albino

(b) State the correct biological term for the visible appearance produced by the genotype, in this case the color of the snake.
(c) (i) Complete the genetic diagram to explain the results of crossing two snak are heterozygous for these alleles.
genotype of parents Aa and \qquad
gametes

(ii) State the ratio of offspring that you would expect from this cross.
ratio of normal : albino offspring = \qquad : \qquad
(d) A breeder has several snakes with normal coloring.

Suggest how she can find out whether a particular snake is homozygous or heterozygous.
\qquad
\qquad
\qquad

8 (a) Fig. 8.1 shows apparatus a student used to investigate the reaction between nitric acid and excess calcium carbonate.

Fig. 8.1
(i) Name the gas that is given off in this reaction.
(ii) Describe how the student could test for the gas you named in (i). You may wish to complete the diagram in Fig. 8.1 to help you to answer this question.
\qquad
\qquad
\qquad
(iii) At the end of the reaction the test-tube in Fig. 8.1 contains a solution of the compound calcium nitrate.

State the general name for compounds like calcium nitrate which are produced when an acid reacts with a metal carbonate.
(iv) The chemical formula of calcium nitrate is $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$.

State the total number of atoms and the number of different elements that are shown combined together in this formula.
total number of atoms
number of different elements
(b) The student then carried out an investigation into the way that the rate of the rea
(a) changed when he varied the concentration of the nitric acid.

Fig. 8.2 shows the apparatus the student used to measure the rate of reaction.

Fig. 8.2
The student measured the rate of reaction by finding how long it took for the gas syringe to fill with gas.
(i) After he had completed several measurements, the student wrote the following correct conclusion in his notebook.

	Conclusion
	The higher the pH of the dilute nitric acid
	the longer it took for the gas syringe to
	fill with gas.

Explain this conclusion briefly.
\qquad
\qquad
\qquad
(ii) State two other variables that can affect the rate of reaction between dilute nitric acid and calcium carbonate.

1 \qquad
2

9 Fig. 9.1 shows a solar-powered golf cart used to carry golfers around a golf course.

Fig. 9.1
(a) As the cart moves around the course, the motion of the cart is measured.

Fig. 9.2 shows a distance/time graph for a small part of the journey lasting 60 seconds.

Fig. 9.2
(i) Write down the total distance covered in 60 s .
m
(ii) Calculate the speed of the cart between \mathbf{B} and \mathbf{C}. Show your working.
\qquad
(iii) Describe the motion of the cart between \mathbf{D} and \mathbf{E}.
\qquad
\qquad
(iv) During another part of the journey, the cart is accelerating.

State whether the forces acting on the cart are balanced or unbalanced.
Explain your answer.
\qquad
\qquad
(b) The cart is powered by solar cells on its roof. The solar cells produce electrical energy used to charge the rechargeable batteries in the cart.

Name one other renewable energy resource that could produce electrical energy.
(c) The golfer hits a golf ball with his club. The ball flies through the air.
(i) State the form of energy given to the golf ball when the ball is hit.
(ii) State the form of energy gained by the golf ball as it rises into the air after being hit.
(d) The mass of a golf ball is 45 g . The volume of a golf ball is $36 \mathrm{~cm}^{3}$.

Calculate the density of the golf ball.
State the formula that you use and show your working.
formula
working
$\mathrm{g} / \mathrm{cm}^{3}$
(e) (i) The head of the golf club is made of solid metal. The air that the golf ball is traveling through is a gas.

Complete Fig. 9.3 below to show the arrangement of particles in a gas. The diagram for a solid has been done for you.

solid

gas

Fig. 9.3
(ii) During the cart's journey, the temperature of the air in the tires increases by $15^{\circ} \mathrm{C}$.

The volume of the air in the tire remains the same.
Explain in terms of particles why the pressure of the air in the tire increases when this happens.
\qquad
\qquad
\qquad
(iii) Sometimes the golfer's hands begin to sweat.

Explain in terms of particles how sweating cools his hands.
\qquad
\qquad
\qquad

10 Fig. 10.1 shows the contents of the human thorax (chest).

\qquad

Fig. 10.1
(a) On Fig. 10.1, name structures A and B.
(b) Oxygen diffuses into the blood from the alveoli inside the lungs. Carbon dioxide diffuses into the alveoli from the blood.
(i) Define the term diffusion.
\qquad
\qquad
\qquad
(ii) Name the component of blood that transports dissolved carbon dioxide.
(iii) When a person is doing vigorous exercise, the concentration of carbon dioxide in the blood increases.

Explain why this happens.
\qquad
\qquad
\qquad
(iv) Suggest how this will affect the rate of diffusion of carbon dioxide from the the alveoli.

Explain your answer.
effect on rate of diffusion \qquad explanation \qquad

11 Petroleum (crude oil) is a liquid fossil fuel.
(a) Name one solid fossil fuel.
(b) Gasoline and diesel are mixtures of liquid hydrocarbons obtained from petroleum.
(i) Name the process used to separate gasoline and diesel from petroleum.
\qquad
(ii) State the main use of gasoline and explain, in terms of its chemical properties, why it is suitable for this use.
use \qquad
explanation \qquad
\qquad
(c) Natural gas is a gaseous fossil fuel, which contains mainly methane mixed with other compounds such as ethane.
(i) Complete the diagram of the structure of one molecule of ethane.
\qquad
(ii) Complete the word chemical equation for the complete combustion of ethane.

(d) Ethene, $\mathrm{C}_{2} \mathrm{H}_{4}$, is an unsaturated hydrocarbon.

Ethene is manufactured by heating large hydrocarbon molecules in the presence of a catalyst. During this process no air must be allowed into the reaction vessel.
(i) Name the process used to manufacture ethene.
(ii) Suggest one reason why air must be kept out of the reaction vessel.
\qquad
\qquad

12 (a) Fig. 12.1 shows a light ray entering an optical fiber.

Fig. 12.1
The light ray travels all the way through the optical fiber.
Explain why the light ray is able to stay inside the optical fiber.
You may draw on the diagram if it helps your answer.
\qquad
\qquad
\qquad
\qquad
(b) White light is passed through a prism as shown in Fig. 12.2.

Fig. 12.2
(i) State the colors seen at positions \mathbf{X} and \mathbf{Y}.

X

Y
(ii) A rainbow is formed in a similar way. Suggest what is acting as a prism when forming a rainbow.
(c) Fig. 12.3 shows a person looking into a mirror and seeing an image.

mirror

Fig. 12.3
(i) Write the letter \mathbf{X} on Fig. 12.3 to show the position of the image of the person's nose.
(ii) Select three words or phrases from the list that describe the image correctly.
larger than object real same size as object
smaller than object
upright
upside down
virtual
\qquad
\qquad

Group																		$\stackrel{\sim}{\infty}$
1	11											III	IV	V	VI	VII	0	
${ }_{3} \begin{gathered} 7 \\ \text { Lithium } \end{gathered}$													${ }_{6}{ }_{\text {Catoon }}^{\text {C }}$	${ }_{7}{ }^{\text {Nitrosen }}$ N	${ }_{8}{ }_{8}^{\text {oxgen }}$	${ }_{9}$19 F Fuoone	$r_{10} \begin{gathered} 20 \\ \mathrm{Ne} \\ \text { Neon } \end{gathered}$	
												$\underbrace{\substack{\text { Alumum }}}_{\substack{\text { Al } \\ \text { Al } \\ 13}}$	$\underset{14}{\substack{\text { Silicon }}}$28 Si		$\underset{16}{ } \underset{\text { Sulfur }}{32}$			
\square			$\begin{array}{\|c} { }_{48}^{48} \\ { }_{22}^{\text {Thanum }} \end{array}$	$\begin{gathered} 51 \\ \mathbf{V} \\ { }_{23}^{\text {vandum }} \end{gathered}$			$\begin{array}{r} 56 \\ { }_{26} \begin{array}{r} \text { ron } \end{array} \\ \hline \end{array}$	$\begin{gathered} 59 \\ \text { Co } \\ \text { Cobat } \\ \text { C7 } \end{gathered}$	$\begin{array}{\|c\|c\|} \hline 59 \\ \mathbf{N i}_{\substack{\text { Nifelel }}} \\ \hline \end{array}$		$\begin{array}{r} 65 \\ \text { Zn } \\ 30 \end{array}$							
85 85 Rubidiun 37	$\begin{gathered} 88 \\ \mathrm{Sr} \\ \text { strontium } \end{gathered}$	$\begin{gathered} 89 \\ { }_{39} \text { Ytruium } \\ \hline \end{gathered}$	$\begin{gathered} 91 \\ \mathbf{Z r} \\ 40 \\ \text { Zironium } \end{gathered}$	$\begin{gathered} 93 \\ \mathbf{N b}_{41} \begin{array}{c} \text { Nobium } \end{array} \\ \hline \end{gathered}$		$\begin{gathered} \text { Tr } \\ \text { Tedenefium } \\ 43 \end{gathered}$	$\begin{gathered} \text { 101 } \\ \text { Ruu } \\ \text { Ruthenium } \\ 44 \end{gathered}$	$\begin{array}{r} 103 \\ \text { Rh } \\ 45 \\ \hline \text { Rhodium } \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 106 \\ \text { Pd } \\ \hline \text { Palladium } \\ \hline 68 \end{array}$			$\begin{gathered} 115 \\ \text { In } \\ \text { Indium } \end{gathered}$	$\underbrace{}_{50} \begin{gathered}119 \\ \text { Sn } \\ \text { Tin }\end{gathered}$		$\begin{gathered} 128 \\ \mathrm{Te} \\ \text { Tellurum } \\ 52 \end{gathered}$	$\begin{array}{\|c\|c} 127 \\ \mathbf{I} \\ 53 \end{array}$	$\begin{array}{r} \begin{array}{r} 131 \\ \text { Xe } \\ \text { Xenon } \end{array} \\ \hline 44 \end{array}$	
	$\begin{array}{\|r\|} \hline 137 \\ \mathrm{Ba} \\ 56 \\ 56 \mathrm{Barium} \end{array}$			$\begin{gathered} 181 \\ \mathbf{T a} \\ \text { Tanalam } \\ \hline \end{gathered}$		$\begin{array}{\|r\|} \hline 186 \\ \mathbf{R e} \\ \text { Rhenium } \\ \hline 75 \end{array}$	$\begin{gathered} 190 \\ \text { Os } \\ 76{ }^{\text {Osnum }} \end{gathered}$	$\begin{array}{r} 192 \\ \mathbf{I r} \\ { }_{77} \text { Iridum } \\ \hline \end{array}$		$\underbrace{\mathbf{A M}}_{79}$Gold		$\underbrace{}_{81} \underbrace{\text { Tl }}_{\text {Thalum }}$	\square	$\begin{array}{\|r\|} \hline 209 \\ \mathbf{B i} \\ \text { Bismuth } \\ \hline 8 \end{array}$	$\begin{gathered} \text { Po } \\ 84 \\ 84 \end{gathered}$	$\underset{85}{\substack{\text { Astaine }}} \begin{array}{\|c} \text { At } \\ \hline \end{array}$	$\underset{{ }_{86}}{\substack{\text { Radon }}}$	
${ }_{87}^{\underset{87}{\text { Francium }}}$	$\begin{array}{r} 226 \\ \text { Ra } \\ \text { Radium } \\ \hline 88 \end{array}$																	
*58-71 Lanthanoid series †90-103 Actinoid series				$\begin{array}{\|c\|} \hline 140 \\ \mathrm{Ce} \\ \text { Cerium } \\ \hline 58 \end{array}$			$\begin{gathered} \text { Prometium } \\ 61 \\ \hline 1 \end{gathered}$	$\begin{gathered} 150 \\ \text { Smamarium } \\ 62 \end{gathered}$	$\begin{array}{\|c\|} \hline 152 \\ \text { Eu } \\ \text { Europium } \end{array}$		$\begin{array}{r} \text { 159 } \\ \text { Tb } \\ 65 \\ \hline \text { Tebium } \end{array}$		$\begin{gathered} 165 \\ \text { Ho } \\ 67 \end{gathered}$	$\begin{gathered} \begin{array}{c} 167 \\ \\ \text { Er } \\ \text { ERium } \end{array} \\ \hline \end{gathered}$	$\underbrace{\substack{ \\\hline}}_{\substack{169 \\ \text { Thwilum }^{\text {The }}}}$		${ }_{71}^{175} \begin{gathered} \text { Lutefium } \end{gathered}$	
Key		$\begin{aligned} & a=\text { relative atomic mass } \\ & \text { X }=\text { atomic symbol } \\ & \text { b }=\text { proton (atomic) number } \end{aligned}$		$\begin{array}{\|c\|} 232 \\ \text { Th } \\ 90 \end{array}$	$\underset{\substack{\mathrm{Pa} \\ \text { Procactium } \\ 91}}{\mathrm{~Pa}}$	${\underset{92}{\text { Ulanium }}}_{\substack{238 \\ u}}^{\text {and }}$		$\underset{\substack{\text { puturium } \\ \text { 94 }}}{\mathrm{Pu}}$		$\underset{96}{\substack{\text { curium }}}$	$\begin{gathered} \text { BK } \\ \text { g7 Benflum } \end{gathered}$	$\underset{\substack{\text { Calfonium } \\ 98}}{\text { Cf }}$	$\underset{\substack{\text { Enstesium } \\ 99 \\ \text { get }}}{\text { Es }}$	$\begin{gathered} \text { Fm } \\ \text { Fomium } \\ \hline 00 \end{gathered}$	$\underset{\substack{\text { Mendeduium } \\ \text { Ho1 }}}{\mathbf{M d}}$	$\begin{gathered} \text { No } \\ \text { Nobelium } \\ \hline 102 \end{gathered}$	$\underset{\substack{\text { Lawencium } \\ \text { 103 }}}{\text { Lr }}$	

The volume of one mole of any gas is $24 \mathrm{dm}^{3}$ at room temperature and pressure (r.t.p.).

$$
\begin{aligned}
& \begin{array}{c}
\text { DATA SHEET } \\
\text { The Periodic Table of the Elements }
\end{array}
\end{aligned}
$$

