

2 hours

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Center number, candidate number and name on all the work you hand in.

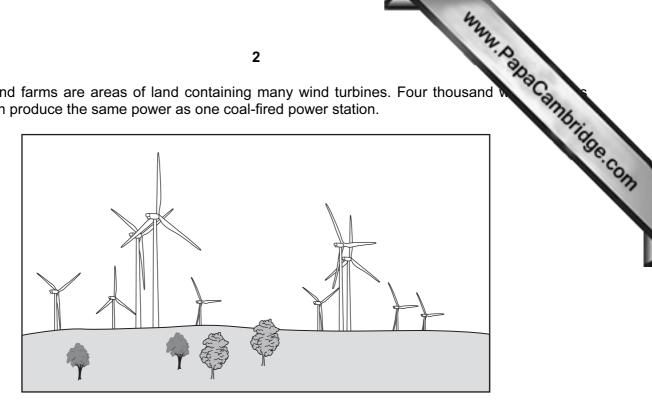
Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer **all** questions.


Electronic calculators may be used.

You may lose marks if you do not show your working or if you do not use appropriate units. A copy of the Periodic Table is printed on page 32.

At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question.

This document consists of 32 printed pages.

1 (a) Wind farms are areas of land containing many wind turbines. Four thousand can produce the same power as one coal-fired power station.

2

(i) State one advantage and one disadvantage of using wind, rather than coal, to generate electrical power.

advantage disadvantage[1]

(ii) On a particular day, the power input to a wind turbine is 1500 kW. The turbine produces 900 kW of electrical power.

Calculate the efficiency of the wind turbine.

State any formula that you use and show your working. State your answer as a percentage.

formula

working

% [2]

		122	
		3	
(b)	Nuc ator	clear power stations generate electricity using energy released by the nucleus.	ambridge.co.
	(i)	Describe the process that transforms this energy into electrical energy.	145e.co.
			[3]
	(ii)	Energy is released in the Sun by a different nuclear process.	
		Name this process.	
			[1]

(c) A wind farm generates 33 MW of electrical power. The wind farm is connected to a transmission line at a potential difference of 132 kV.

Calculate the current produced by the wind farm.

State the formula that you use and show your working.

formula

working

A [2]

www.papaCambridge.com (d) Fig. 1.1 shows how the electricity cables carrying electricity from a wind farm are pylons.

The cables hang loosely in hot weather.

Fig. 1.1

Explain why the cables must hang loosely in hot weather.

[2]

(e) A scientist investigates six different wires used in making these cables. He wants to determine the resistance of each piece of wire.

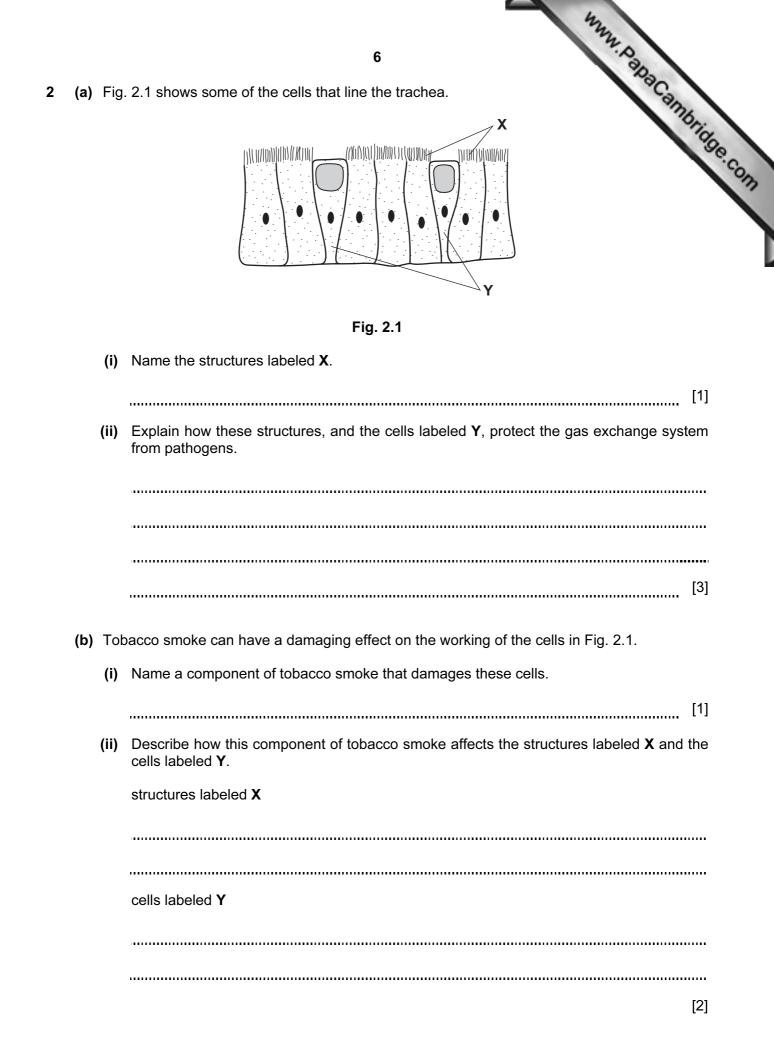
wire	metal composition	length/m	cross-sectional area/cm ²
Α	copper	10	0.1
В	nichrome	10	0.1
С	copper	20	0.1
D	nichrome	20	0.1
Е	copper	10	0.2
F	nichrome	20	0.2

(i) Which wire, A or E, will have the greater resistance?

Explain your answer.

wire	 because		
	 	[1]

	422	
	5 The second sec	
(ii)	Wire B has a greater resistance than wire A .	2
	Which wire, B , C , D , E or F , has the greatest resistance?	mbridge
	Explain your answer.	Se.C.
	wire	133
	explanation	
		[2]
(iii)	The resistance of wire B is 0.15Ω .	

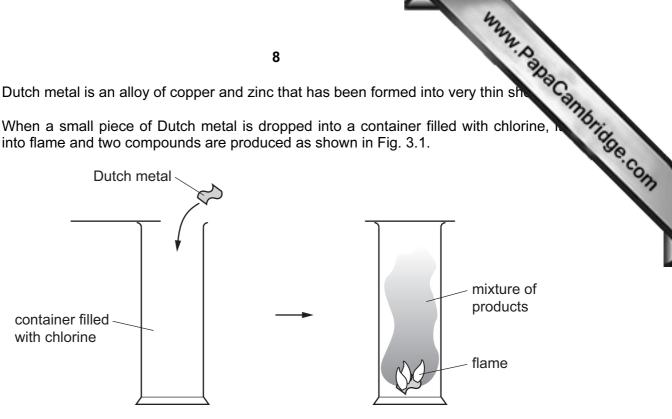

Calculate the current passing through the wire when a voltage of 12 V is applied across it.

State the formula that you use and show your working.

formula

working

.....A [2]



Please turn over for Question 3.

3 (a) Dutch metal is an alloy of copper and zinc that has been formed into very thin sh

When a small piece of Dutch metal is dropped into a container filled with chlorine, into flame and two compounds are produced as shown in Fig. 3.1.

(i) State the meaning of the term alloy.

......[1] (ii) State the physical property of metals that allows them to be formed into very thin sheets.[1] (iii) Suggest the names of the two compounds formed when Dutch metal reacts with chlorine. 1 [1] 2

www.papacambridge.com (b) Sodium burns in oxygen gas to produce a white solid that contains the ionid sodium oxide.

Fig. 3.2 shows a sodium atom and an oxygen atom.

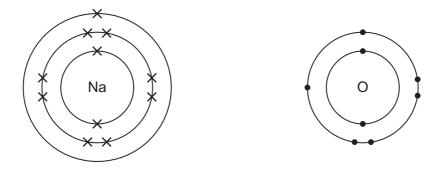
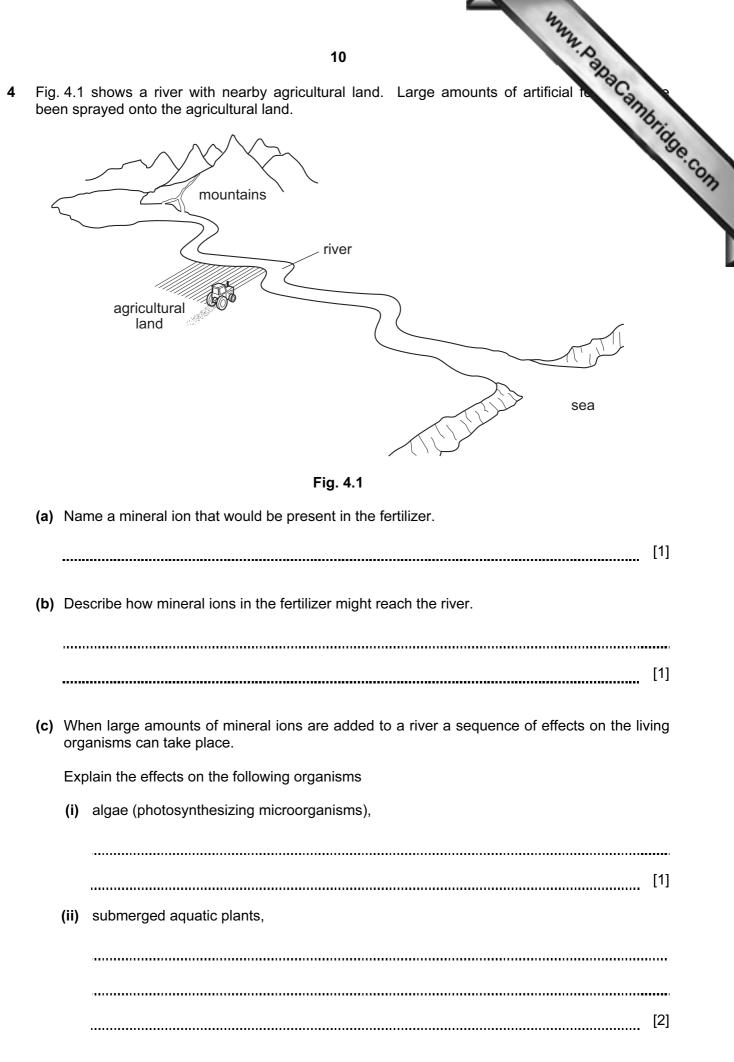
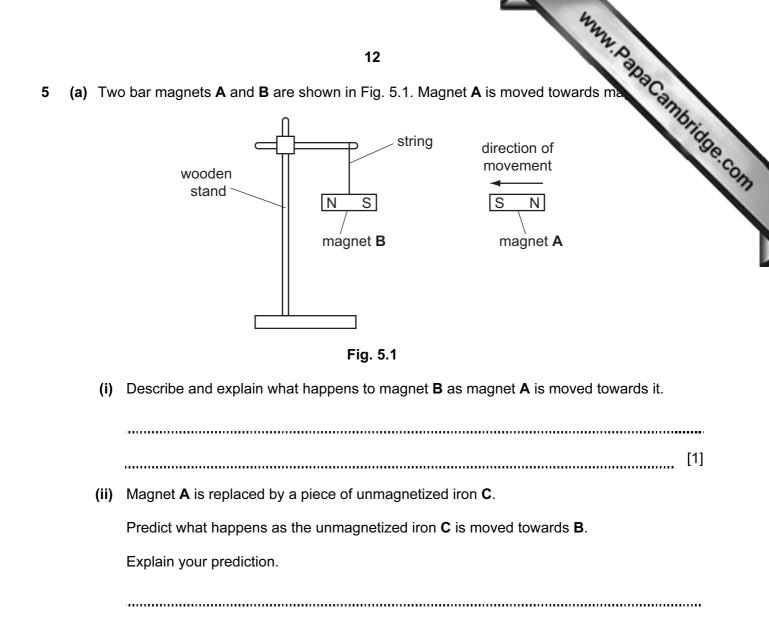


Fig. 3.2

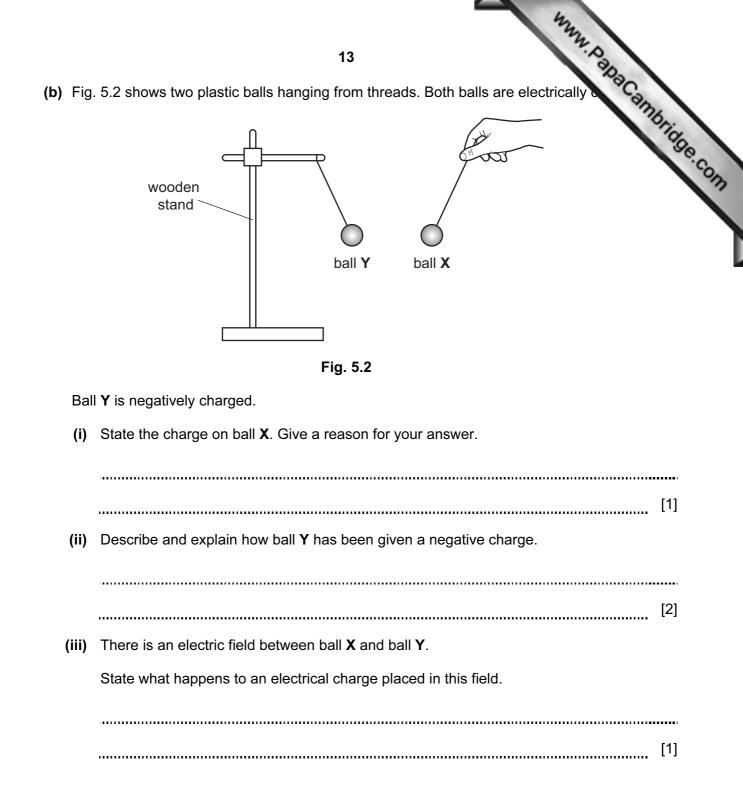
Predict and explain, in terms of changes in electronic structure, the chemical formula of sodium oxide. You may wish to draw diagrams to help you to answer this question.


..... [3]

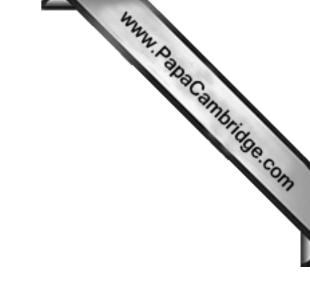
(c) Phosphorus is a non metallic element containing molecules that have the formula P_4 .

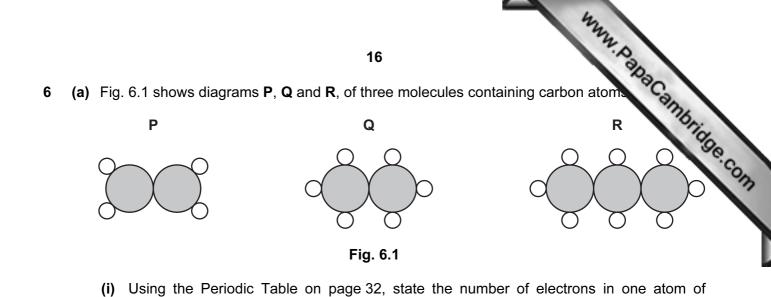

The chemical formula of phosphorus oxide shows four phosphorus atoms bonded with ten oxygen atoms.

Construct a balanced symbolic equation for the reaction between phosphorus and oxygen gas to form phosphorus oxide.


[3]

(iii	11 bacteria,	bride
(iv	fish.	[2]
	ne farmer uses artificial fertilizer, suggest two ways in which the effect of the fertilize river could be reduced.	[1] r on
1		[2]


[2]


www.papacambridge.com (c) The mass of ball X is $3.97 \text{ g} (3.97 \times 10^{-3} \text{ kg})$. The volume of ball X is 4.17 cm^3 (4.1 Calculate the density of the plastic used to make ball X. State the formula that you use and show your working. State the units of your answer. formula

working

density = _____ unit = ____ [3]

Please turn over for Question 6.

Explain how you obtained your answer.	
number of electrons	
explanation	
	[2]

(ii) State and explain which diagram, P, Q or R, represents one molecule of ethane.

	diagram	
	explanation	
		•••••
		[2]
(iii)	Name the type of chemical bonding found in all of the compounds shown in Fig. 6.1.	
	Give a reason for your answer.	
	type of bonding	
	reason	
		[2]

carbon.

(b) Methane hydrate is a solid mixture in which methane molecules are con ice crystals.

> Large amounts of methane hydrate exist under the oceans and in the cold polar re of the Earth.

www.PapaCambridge.com Table 6.1 shows the relative numbers of moles of methane and water in a typical sample of methane hydrate.

substance	chemical formula	relative number of moles
methane	CH ₄	1.00
water (ice)	H ₂ O	5.75

Table 6.1

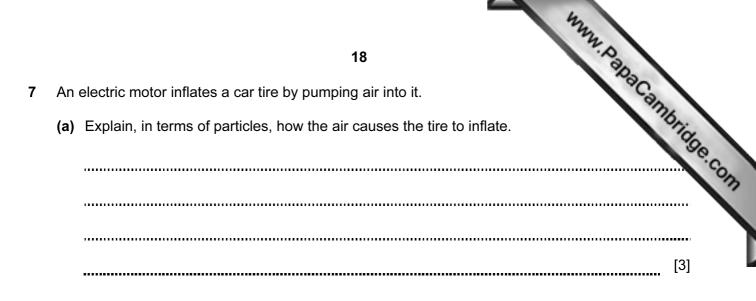
(i) The mass of 1.00 moles of methane is 16.0 g.

Calculate the mass of 5.75 moles of water.

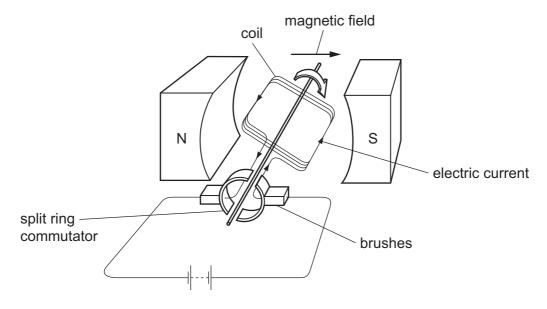
Show your working.

[2]

(ii) Calculate the mass of methane hydrate that contains 1.00 moles of methane.

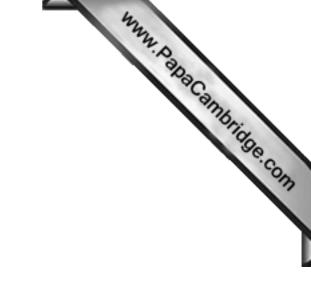

[1]

(iii) When the temperature of methane hydrate increases, the ice melts and releases the methane.


Some scientists think that methane hydrate might have a serious effect on global warming.

Suggest how the breakdown of methane hydrate might affect global warming.

[2]


(b) Fig. 7.1 shows a simple electric motor.

Explain why the coil turns when an electric current passes through it.

[4]

Please turn over for Question 8.

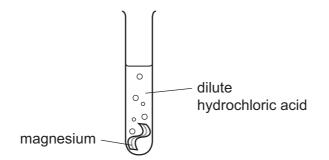
www.PapaCambridge.com 20 8 After its flowers have been pollinated, a sweetcorn (maize) plant produces a corncol Fig. 8.1. purple grain yellow grain Fig. 8.1 Each of the individual grains on the corncob results from the fertilization of a different egg cell in the female parent. The pollen all came from the same (male) parent. Some of the grains are purple (dark) in color and others yellow (light) in color. (a) The variation in grain color is an example of discontinuous variation. Explain why this variation is described as *discontinuous*. [2] (b) (i) In the row of grains labeled X to Y, count the number of purple (dark) grains and the number of yellow (light) grains. number of purple (dark) grains _____ number of yellow (light) grains [1] (ii) State, to the nearest whole number, the ratio of purple grains to yellow grains. [1] (c) The allele for purple color (G) is dominant and the allele for yellow color (g) is recessive. (i) What would be the color of a sweetcorn grain with the genotype **Gg**? [1] (ii) Use the ratio of purple grains and yellow grains in (b)(ii) to state the genotypes of the parents. [2] genotypes and

offspring	
genotype	
grain color	
ratio	

[5]

www.PapaCambridge.com 9 (a) Fig. 9.1 shows air passing into the engine of a car, and a mixture of exhaust (being released. composition of air taken into the car's engine exhaust (waste) gas oxygen 21% mixture released into the air

(i) Complete the table in Fig. 9.1 to show the name and percentage of the main gas in air.


[2]

(ii) Name one gas, other than carbon dioxide, in the mixture of exhaust gases which causes air pollution.

State one harmful effect that this gas has in the environment.

gas		
harm	ful effect	
	[[2]

(b) Hydrogen gas is released when magnesium reacts with dilute hydrochloric acid.

(i) Describe the test for hydrogen gas.

[2]

(ii) State the word equation for the reaction between magnesium and dilute hydrochloric acid.

[1]

23 (c) Fig. 9.2 shows the apparatus a student used to measure the temperature of temper

The student repeated the experiment using different masses of magnesium powder.

After each experiment he rinsed out the insulated beaker and then refilled it using the same volume of 1.0 mol/dm³ hydrochloric acid. His results are shown in Fig. 9.3.

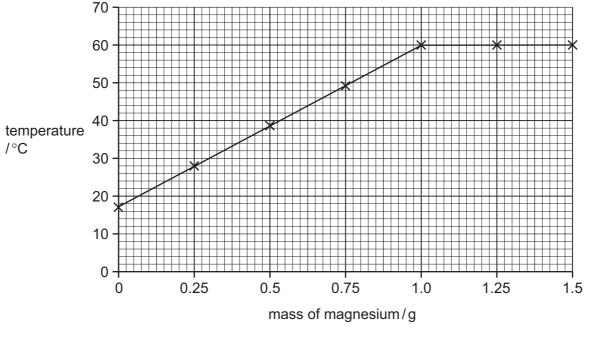
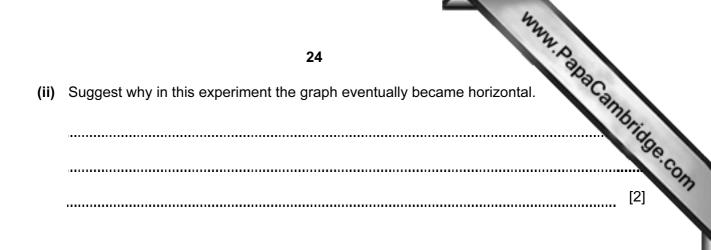
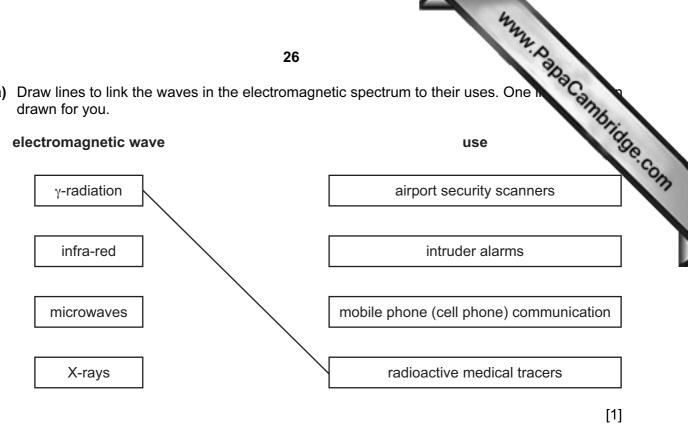
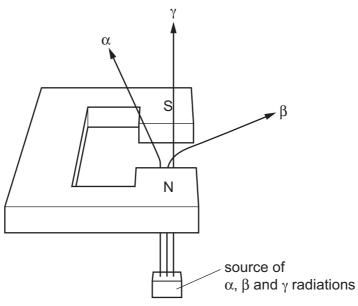



Fig. 9.3

(i) Explain, in terms of energy, why the temperature of the reaction mixture increases when magnesium powder is added to dilute hydrochloric acid.


[2]

Please turn over for Question 10.


10 (a) Draw lines to link the waves in the electromagnetic spectrum to their uses. One drawn for you.

(b) Different waves in the electromagnetic spectrum have different wavelengths and frequencies. State the meaning of the terms *frequency* and *wavelength*. You may use diagrams to help your explanation.

frequency	
wavelength	
	[2]

27 (c) α-radiation, β-radiation and γ-radiation are three radioactive emissions. (i) Place the three radiations in order of their ionizing ability, placing the most ionizsity most ionizing least ionizing [1] (ii) Fig. 10.1 shows α, β, and γ radiations passing through a magnetic field.

Explain the results.

[3]

			28	WW. Par
11	(a)	Define <i>osmosis</i> .		SaCambri
				Sec.
				[3]

(b) A piece of plant tissue was placed in a concentrated sugar solution on a microscope slide. Fig. 11.1 shows the appearance of three of the cells from this tissue after they had been in the sugar solution for one hour.

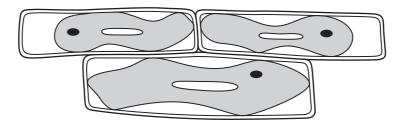


Fig. 11.1

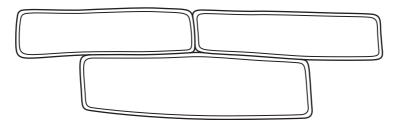
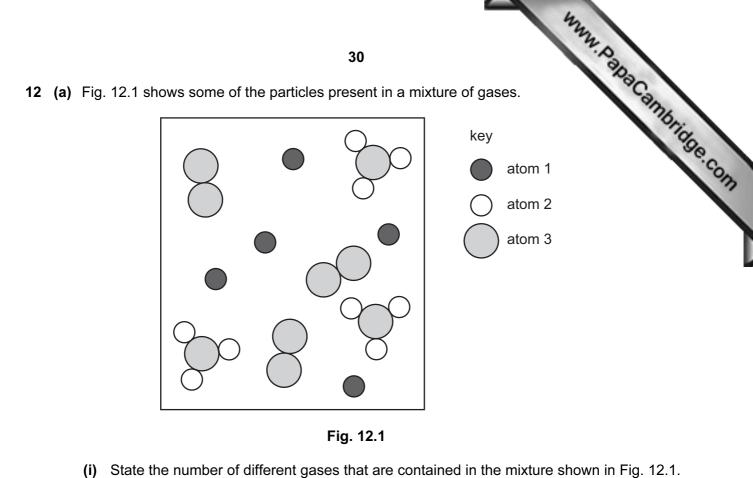
(i) Describe the effect, as shown in Fig. 11.1, that the sugar solution has had on the cells.

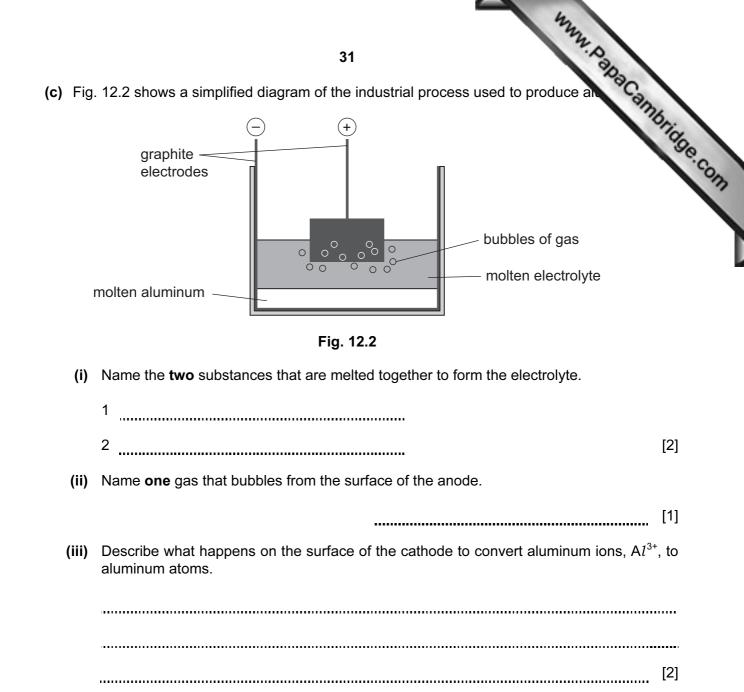
[1]

(ii) Explain this effect in terms of osmosis.

[2]

(iii) Complete Fig. 11.2, to show how the cells would appear if they had been placed in water, instead of in a concentrated sugar solution.


Fig. 11.2

	2mg
29	A.D.
(c) Plants absorb water by osmosis into their root hair cells.	TaCan.
(i) Explain how the structure of the root hair cells is related to this functior	"Bridge.c
	OT
	[2]
(ii) State one other function of root hair cells.	
	[1]

	• •					Ŭ							Ŭ		
															[1]
	(ii)	On Fig.	12.1 d	raw a	label	line f	to a mole	cule of a	a compo	und. Lat	oel this	mole	cule	C.	[1]
((iii)	Explain	your a	nswei	r to (i i	i).									
															[1]
(b)	Nar	ne the	family	of m	etals	that	includes	cohalt	(proton	number	27) a	nd ni	ckel	(prot	hon
(0)		nber 28)	•		ctais	that	moludeo	coban	(proton	number	21) u		CICCI	(proi	

[1]

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$							ษ	Group			=	≥	>	>	>	С
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $						Hydrogen						:		:	;	
							_					12 C	14 Z	91 O	19 19	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $																
											Aluminum 13	Silicon 14	Phosphorus 15		Chlorine 17	Ar Argon 18
	45 Sc		5 <	C 23	55 Mn	56 Fe	°5 C	59 Ni	64 Cu	65 Zn	70 Ga	73 Ge	75 As	79 Se	8 8 8	8 Kr
	Scandiu 21	22	Vanadium 23	Chromium 24	Manganese 25	lron 26			Copper 29		Gallium 31	Germanium 32	Arsenic 33	Selenium 34	Bromine 35	Krypton 36
	89 Attrium	40	93 Nobium 41	96 Molybdenum 42	Tc Technetium	101 Ruthenium 44	103 Rh Rhodium 45	106 Pd Palladium 46		112 Cd Cadmium 48	115 In Indium 49		122 Sb Antimony 51	128 Te ^{Tellurium} 52	127 I Iodine 53	131 Xe 54
7 1	139 La Lanthanu 57	* 72	181 Ta Tantalum 73	184 V Tungsten 74	186 Re Rhenium 75	190 OS Osmium 76	192 T Iridium 77	195 Pt Platinum 78		201 Hg ^{Mercury}	204 T1 Thallium		209 Bismuth 83	Polonium 84	At Astatine 85	Radon 86
	227 AC Actiniun 89															
Tables 232 238 248<	series ries		140 Certum 58	141 Praseodymium 59		PM methium	150 Samarium 62	152 Eu 63	157 Gd Gadolinium 64	159 Tb ^{Terbium} 65	162 Dysprosium 66	165 Holmium 67	167 Er 68	169 Thulium 69	173 Yb Viterbium 70	175 Lutetium 71
	elative atomic ; oroton (;	atomic mass symbol atomic) number	232 Thorium 90	Pa Protactinium 91	238 Uranium 92		Plutonium 94	Am Americium 95	C Curium Occurium 96	BK Berkelium 97	Cf Californium 98	Einsteinium 99	Fermium 100	Mendelevium 101	Nobelium 102	Lawrencium 103

DATA SHEET