

General Certificate of Education O Level

MARK SCHEME for the June 2005 question paper

5070 CHEMISTRY

5070/02

Paper 2 (Theory 1), maximum mark 75

www.papacambridge.com

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which Examiners were initially instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began. Any substantial changes to the mark scheme that arose from these discussions will be recorded in the published *Report on the Examination*.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the *Report on the Examination*.

• CIE will not enter into discussion or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the June 2005 question papers for most IGCSE and GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

JUNE 2005

GCE O Level

MARK SCHEME

MAXIMUM MARK: 75

SYLLABUS/COMPONENT: 5070/02

CHEMISTRY Paper 2 (Theory 1)

Page 1			Mark Scheme						Syllabu	al	2.D
			O LI	EVEL	– JU	JNE 200	5		5070		10
					Sec	ction A					
				Мах	kimu	m 45 ma	arks				
1	four	four <u>names</u> at (1) each:				penalise correct formulae once only					
	(a)	nitr	ogen dioxide	•							
	(b)	silio	con dioxide								
	(c)	alu	minium oxide	e							
	(d)	lea	d(II) iodide							[Tot	al: 4]
2	(a)	iror the mo	iron has positive ions and delocalised electrons (1) the electrons are free to move (1) moving electrons is an electric current (1) [3]								
	(b)	hig Iow	h carbon stee carbon stee	els are Is are	e stro soft	ong <u>or</u> ar <u>or</u> are m	re brittl nore ea (allow	e (allow asily shap more m	harder) oed alleable	(1)) (1)	[2]
	(c) (i) cor	nditions are a	ir (oxy	ygen) and wa	ter <u>or</u>	moist air	(1)		
		(ii) ma	gnesium is a	bove	e iron in the reactivity series						
		(or her	nce it corrode	es bef	ore th	ne iron (1)				[3]
	(d)	any col cat	/ <u>two</u> from: oured <u>compc</u> alysts/valenc	o <u>unds</u> / sy/forn	/varia n con	able oxid nplex ior	ation s าร	states/ca	n act as		[2]
	(e)	cal for div for	culation idea of dividi iding by the s final formula	ng by smalle only i	est (1)	<u>ect</u> A _r (1)) t 2 fully o) correct	(1)			
		К	0.547/39	Fe	0.1	95/56	С	0.252/2	12 N	0.29	4/14
			0.0140 4		0.0)0348 1		0.0210 6		0.02 6	10
		i.e.	K₄FeC ₆ N	I 6	<u>or</u>	K₄Fe	(CN) ₆				[3]
										[Tota	al: 13]

				424	
Pa	age 2		Mark Scheme S	yllabus	·D
			O LEVEL – JUNE 2005	5070	1
3	(a)		Group 0 <u>or</u> the noble gas group <u>or</u> Group 8		
	(b)		Any <u>two</u> sensible suggestions at (1) each		
			e.g: Mendeleev's table has:		
			no A_r		
			no atomic numbers		
			periods 4 and/or 5 and all <u>or</u> a specific group has two	elements	
			group numbers Arabic rather than Roman		[2
	(c)		any <u>two</u> observations at (1) each		
			fizzes/runs on the surface/flame/dissolves/explodes/n	nelts	
			$2 \text{ Rb} + 2 \text{ H}_2\text{O} \rightarrow 2 \text{ RbOH} + \text{H}_2$		[
				[То	tal:6
4	(a)		boiling point		[1
	(b)	(i)	making chemicals or feedstock or make petrol		
	(~)	(-)	not make plastics (1)		
		(ii)	for road surfaces (1)		[2
	(c)	(i)	saturated is single bonds <u>or</u> no double/triple bonds		
			or maximum number of hydrogen atoms (1)		
			Trydrocarbon is carbon and Trydrogen only (1)		
		(ii)	correct methane structure (all dots = 1) (2)		[4
	(d)		any <u>two</u> ideas at (1) each:		
			enables supply to match demand (allow more useful) make more petrol		
			make hydrogen		
			make alkenes e.g. ethene		[2
				[To	tal: 9
5	(a)	(i)	hydrogen is below sodium in the reactivity series (1)		
		(ii)	chloride ions are removed (leaving hydroxide ions) (1)	
					[2
	(b)	(i)	chlorine bleaches litmus <u>or</u> turns starch/iodide paper	blue (1)	
		(ii)	hydrogen pops with a burning splint (1)		[2
	(c)		chlorine kills bacteria		
			(not just sterilises the water)		[1]
	(d)		burning hydrogen does not produce pollutants or only	/ forms	F 4 -
			water or nydrogen is not a finite resource, is renewab	ie	[1]

Page 3 Mark Scheme	Syllabus
O LEVEL – JUNE 20	005 5070
(e) (i) no products <u>or</u> no reaction (1)	
(ii)sodium chloride and bromine, bo (allow NaC <i>l</i> and Br ₂)	th needed for (1)
	[Total
A6 (a) sodium ion shown as 2.8 (1)	
chloride ion shown as 2.8.8 (1) (charges not needed. Outer she	ll only = 0)
(b) (i) strong attraction between opposi	itely charged ions (1)
(ii) higher charges on the ions (1)	
(independent marks)	
(c) ions cannot move in the solid but	t can move in the melt

[Section A: score any 45 from 46]

Pa	ge 4	Mark Scheme S	Syllabus
		O LEVEL – JUNE 2005	5070
		Section B	
		Answer any <u>three</u> questions	
37	(a)	ozone is formed by photochemical reactions (or sparks in air, u.v on O_2)	
	(b)	ozone removed by reaction with chlorine (atoms) (1) derived from CFC's (1) ozone loss causes skin cancers <u>or</u> cataracts <u>or</u> crop of <u>or</u> skin diseases <u>or</u> eye damage (1) (allow O_3 + CFC for (1))	damage
	(c) (i)	bond breaking is endothermic/absorbs energy (1) <u>and</u> bond forming is exothermic/releases energy more energy released than absorbed (only if first poir	nt scored) (1)
	(ii	 as temperature increases molecules move faster or increased k.e. (1) hence more frequent collisions or more molecules energy exceeds the activation energy 	ergy (1)
	(ii	ii)calculation 48 g ozone releases 143 kJ (1) 16 g ozone releases 47.66 kJ <u>or</u> 47.7 kJ (1) (answer alone (1), units needed) (if $6 \times 16 = 96$ g ozone used, then (0)) (if 0.33 used, answer = 47.2)	
			[Total:
88	(a)	calculation (2) 143.5 g AgC <i>l</i> contains 108 g Ag 0.287 g AgC <i>l</i> contains 0.216 g Ag (answer alone (1) , units needed)	
	(b)	oxidation is electron loss <u>or</u> an increase in O.N. (1) copper(I) is oxidised because it loses an electron <u>or</u> its O.N. increases (1) chlorine is reduced because it gains an electron <u>or</u> its O.N. decreases (1)	
	(c)	equation (1) Ag + CuC $l_2 \rightarrow$ AgC l + CuC l	
	(d) (i)	equation (1) state symbols (1) $CuCl_2(aq) + 2 NaOH(aq) \rightarrow Cu(OH)_2(s) + 2 NaCl_2(or ionic, Cu^{2+} + 2OH^- \rightarrow Cu(OH)_2)$ (scores (1) for states)	l(aq),
	(ii	 name is copper(II) hydroxide (allow copper hydroxide colour is blue <u>or</u> blue-green (1) (colour only for correct name) 	e) (1)

			1332
Pa	ge 5	Mark Scheme	Syllabus A
		O LEVEL – JUNE 2005	5070 23
9	(a) (i) the catalyst is iron or Fe_2O_3 (1)	
	(ii) equation $N_2 + 3H_2 \rightarrow 2NH_3$ (1)	
	(iii) the temperature is 280 °C (1) the pressure is 400 atmos (1)	
	(iv)higher temperature gives faster reaction (1) (higher yield = -1)	[5]
	(b)	a catalyst increases reaction rate (1) (not alters the rate) a lower activation energy (1) hence saves energy (1) (third mark only if E ₂ given)	[3]
	(c)	equation (1) Ca(OH) ₂ + 2 NH ₄ NO ₃ \rightarrow Ca(NO ₃) ₂ + 2 H ₂ O + 2 ammonia lost as a gas (1)	2 NH ₃
			[4]
			[Total: 10]
D	(a)	name is butanoic acid (not butenoic) (1)	
	(b)	formula is $C_5H_{11}CO_2H$ (not $C_6H_{12}O_2$) (1)	
	(c)	structure of ethyl ethanoate (1) allow full structure <u>or</u> condensed version, CH ₃ CO ₂ C	₂ H ₅
	(d)	allow any suitable named oxidising reagent (1) e.g. (acidified) potassium dichromate(VI) <u>or</u> air <u>or</u> ox (allow formula)	xygen [(a) to (d) 4]
	(e)	equation (1) Mg + 2 CH ₃ CO ₂ H \rightarrow Mg(CH ₃ CO ₂) ₂ + H ₂ calculation (2) 50 cm ³ acid is 0.05 mol 0.025 mol Mg needed 24 x 0.025 = 0.60 g (answer alone (1), unit needed)	[3]
	(f)	ethanoic acid is weak and hydrochloric is strong (1) lower [H ⁺] concentration in ethanoic acid (1)	[2]
	(g)	ionic equation (1) H⁺ + OH⁻ → H₂O	[1]
		_	FT - 4 1 403
			[I OTAI: 10]