UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE O Level

MARK SCHEME for the May/June 2006 question paper

5070 CHEMISTRY

5070/02

Paper 2

maximum raw mark 75

www.papacambridge.com

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which Examiners were initially instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began. Any substantial changes to the mark scheme that arose from these discussions will be recorded in the published *Report on the Examination*.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the *Report on the Examination*.

• CIE will not enter into discussion or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2006 question papers for most IGCSE and GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses

Page	2 GCE C	Mark Scheme D Level – May/June 2006	Syllabus 5070	alla .
		Section A		Can
/laximum	n 45 marks			Tide
\1 five <u>r</u>	names at (1) each	penalise correct for	rmulae once only	
(a) r	nickel			
(b) a	aluminium <i>or</i> sodium			
(c) a	aluminium oxide			
(d) r	nitrogen <i>or</i> phosphorus			
(e) i	ron <i>or</i> nickel			
				[Total: 5]
A2 (a) (C			[1]
(b) (C			[1]
(c) [D and E both needed for			[1]
(d) s	six entries to the table:			
6	all six correct		(2)	
f	ive correct		(1)	
ŀ	ess than five		(0)	[2]

	atom	ion
protons	19	19
electrons	19	18
neutrons	20	20

[Total: 5]

	Pag	e 3		Mark Scheme	Syllabus	Y.
				GCE O Level – May/June 2006	5070	2
3	(a)	(i)	<u>one</u>	characteristic:	(1)	amp
			e.g.	same chemical reactions gradation in phys differ by CH_2	ical properties	Tidge
			<u>not</u>	has a general formula		
		(ii)	form	nula is C _n H _{2n}	(1)	
		<u>not</u>	(Cr	72 <i>)</i> n	(1)	101
	<i></i> .	<i>(</i>)				[2]
	(b)	(i)	equ	ation : $2C_3H_6 + 9O_2 \rightarrow 6CO_2 + 6H_2O$		
			all s corr	ymbols correct rect balance	(1) (1)	
		(ii)	sub	stitution reaction	(1)	
						[3]
	(c)	nan	ne pr	opene <i>or</i> propylene	(1)	
		cor	rect s	structure with double bond shown and all H atoms ind	licated (1)	
						[2]
						[Total: 7]
4	(a)	equ	atior	n: CaCO ₃ → CaO + CO ₂		[1]
	(b)	(i)	equ	ation: CaO + H ₂ O \rightarrow Ca(OH) ₂	(1)	
		(ii)	nam	ne is calcium carbonate	(1)	
						[2]
	(c)	any	one	large scale use e.g.		
		mal neu	king Itralis	mortar/ making plaster/ for limewash/ softening se acid soil/ manufacture of sodium carbonate/ was	water/ reduce soil hing soda/ making blo	acidity/ eaching
		P04				[1]
	(d)	calo	culati	on		[3]
	•	•	M _r c 456 912	of Ca ₃ SiO ₅ is 228, Ca(OH) ₂ - 74 g Ca ₃ SiO ₅ gives 222 g Ca(OH) ₂ (mark for correct rai	tio)	

[Total: 7]

Daga		Mark Sahama	Syllahue A	The second secon
Page	4	GCE O Level – May/June 2006	5070	03
A5 (a) f	formu	ıla is SiC		Cant
(b) (graph SiC d	nite has free / delocalised / mobile electrons loes not	(1) (1)	110ge.
(c) ((i) S	SiC has <u>many</u> strong /covalent bonds	(1)	
((ii) d	liamond has strong <u>er</u> bonds	(1)	
				[2]
(d) a	answ	er 4.40 g		[1]
				[Total: 6]
A6 (a) <u>t</u>	<u>two</u> o floats	bservations at (1) each: /on the surface moves bubbles dissolves/disappears		[2]
(b) e	equat	tion: 2 Li + 2 H ₂ O \rightarrow 2 LiOH + H ₂		[1]
(c) e	electr	on loss is oxidation or oxidation is an increase in O.N.		[1]
(d) <u>t</u>	t <u>wo</u> o explo	bservations des/popsburns/flame		[2]
·	onpro			[Total: 6]
A7 (a) ((i) g c	graphs are (roughly) similar or high CO ₂ matches high temperatures	(1)	
((ii) <u>t</u> n d	<u>wo</u> effects at (1) each: nelting of polar ice or rise in sea levels lesertification/ <u>extreme</u> climate changes/effect on animal/p	lant habitats(2)	
	-l-4 -			[3]
(d)	all do	ts (1) only no double bond (0)	(2)	[2]
(c) ((i) <u>n</u>	name methane	(1)	
((ii) c	cow flatulence or decay of vegetation	(1)	
((iii) ti c C C	wo points from ozone absorbs u.v. light/protects against u.v. light CFC's or chlorine atoms react with ozone CFCs deplete the ozone laver/reduce the amount of ozone	e (2)	
			~ /	

[Total: 9]

[Total for Section A: 45]

ы.

Page 5	Mark Scheme GCE O Level – May/June 2006	Syllabus 5070	
	Section B	37	any
	Answer any three questions		Tido
3 (a) source	e is fertilisers or detergents		
(b) any <u>th</u>	ree points from four		
 al th wa ba 	gal bloom forms is blocks sunlight ater plants die acteria remove oxygen from the water		
			[3]
(c) (i) ei	ther add Al and NaOH and warm NH_3 turns litmus blue		
or	add <u>conc.</u> H ₂ SO ₄ and FeSO ₄ brown ring forms	(2)	
(ii) ni	trate ion too dilute	(1)	
			[3]
(d) calcula	ation		
mols c mols c	of I_2 is 0.508/(2 x 127) = 0.002 of O_2 is 0.002/2 = 0.001 of O_2 is 0.001/2 = 0.0005 mol dm ⁻³		
conc.			

[Total: 10]

[2]

[Total: 10]

