UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS **GCE Ordinary Level**

www.papacambridge.com MARK SCHEME for the May/June 2007 question paper

5070 CHEMISTRY

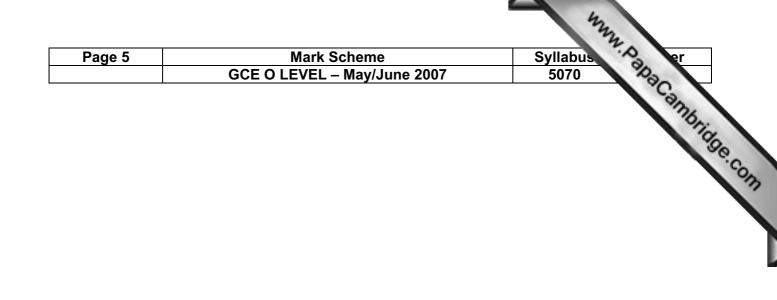
5070/02

Paper 2 (Theory), maximum raw mark 75

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began.

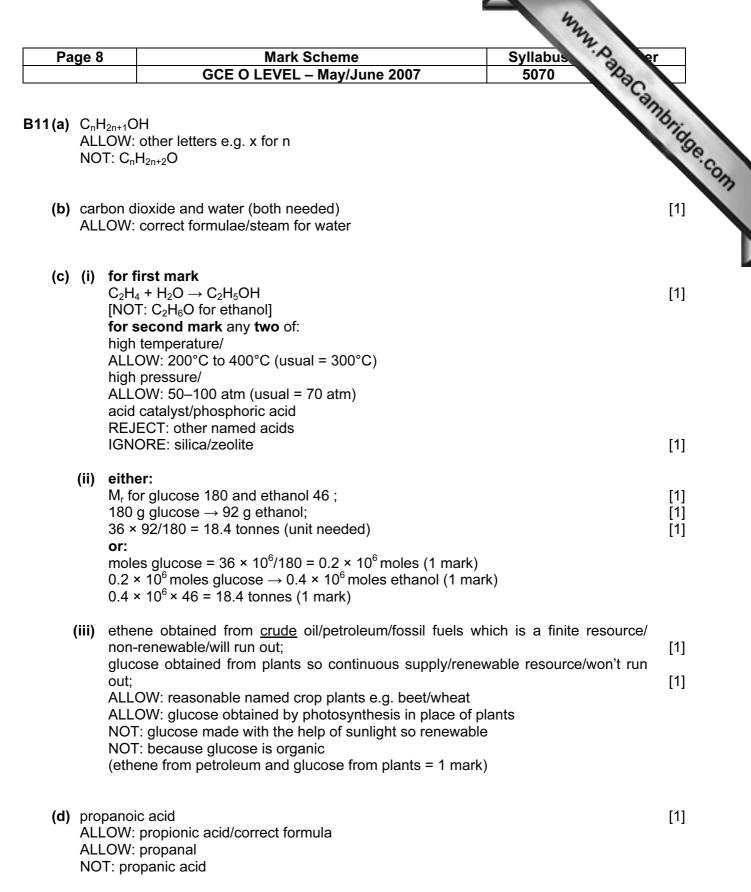
All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

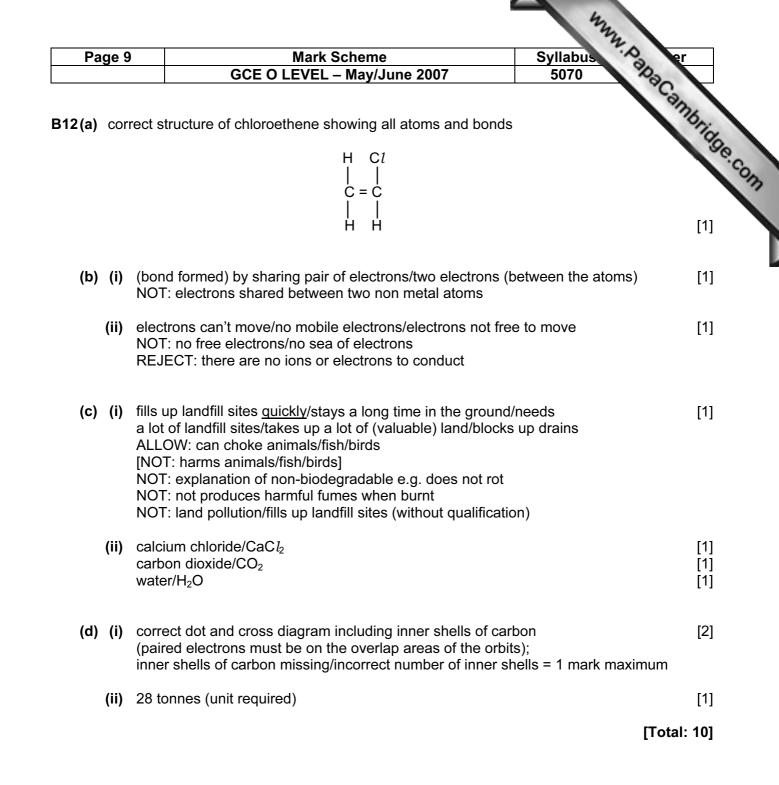

CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2007 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

P	age 2	2 Mark Scheme S GCE O LEVEL – May/June 2007	Syllabus of er 5070	
Section A				
	van	nadium(V) (oxide) LOW: vanadium pentoxide/vanadium oxide/V₂O₅	Syllabus 5070 Buba er 5070 Buba Cambrida [1]	
(b)		bon (monoxide) LOW: CO	[1]	
(c)		oper(II) (oxide) LOW: copper oxide/CuO	[1]	
(d)	ALL	phur dioxide LOW: SO ₂ IT: sulphur oxide	[1]	
(e)		cium (oxide) LOW: CaO	[1]	
			[Total: 5]	
.2 (a)		ammonium sulphate = 132, and 2N = 28; = 100 × 28/132 = 21 or 21.2	[2]	
(b)	(bo	n(II) – grey green/green solid or precipitate th colour and precipitate needed for the mark) LOW: ppt	[1]	
	(bo [.] ALL	n(III) – red-brown/brown/rust(y)-coloured th colour and precipitate needed for the mark) LOW: brick red	. [1]	
		T: red/pink/reddish/orange/other combinations with red or brown LOW: 1 mark if both colours correct but no reference to precipita		
(c)		purple to colourless ALLOW: purple to (pale) yellow	[1]	
	(ii)	(substances whose/atoms/ions/its) oxidation number increases oxidation number becomes more positive/ oxidation number becomes less negative/	5/	
		decreases oxidation number of another substance etc.	[1]	
(d)) (i)	$\frac{22.5}{1000} \times 0.02 = 4.5 \times 10^{-4} \text{ (moles KMnO}_4\text{)}$	[1]	
	(ii)	$4.5 \times 10^{-4} \times 5 = 2.25 \times 10^{-3}$ (moles Fe ²⁺) 2.25 × 10 ⁻³ × 56 = 0.126 g		
		ALLOW: 0.13 g	[2]	
			[Total: 9]	


Pa	ge 3	3 Mark Scheme Syllabi	is A er
		GCE O LEVEL – May/June 2007 5070	1000
3 Ca² C <i>l</i> ⁻		20 (protons),20 (neutrons),18 (electrons)17 (protons),20 (neutrons),18 (electrons)	MMM. Papa Cambridge [Total:
4 (a)	A a		[1]
(b)	D		[1]
(c)	Е		[1]
(d)		ene LOW: butylene/but-1-ene JECT: but-2-ene	[1]
			[Total: 4]
5 (a)	(i)	Na ⁺ and C l^- (both required)	[1]
	(ii)	anode: chlorine ALLOW: Cl_2 or as product of an equation	[1]
		cathode: hydrogen ALLOW: H_2 or as product of equation IF: hydrogen at anode and chlorine at cathode = 1 mark	[1]
(b)	imp	nplete circuit with electrodes dipping into electrolyte and cell(s)/(dc) por oure copper anode/positive electrode and pure copper cathode/negative LOW: + and – on diagram with impure and pure copper	
	ALI (ele	LOW: impure copper anode and copper cathode; ectrolyte) is <u>aqueous</u> copper(II) sulphate LOW: copper sulphate <u>solution/aqueous</u> CuSO ₄ etc.	[1]
(c)	(i)	bauxite ALLOW: alumina/cryolite/diaspore/gibbsite/bőhmite NOT: aluminium oxide	[1]
	(ii)	carbon ALLOW: graphite	[1]

Pa	ige 4	4		Mark Scheme		Syllabus	er
			GCE O LI	EVEL – May/June 2	007	5070	Day
6 (a)	•	,	turns brown/orange ck/grey/purple solut	-			apaCambrid
(b)	-	_	$ \rightarrow 2 \text{KC} l + I_2 C l_2 + 2 I^- \rightarrow 2 \text{C} l^- + $	I ₂			
(c)			lost/electron loss/e oxidation number o	lectrons removed OV f iodine increases	VTTE		[1]
(d)	(i)	astati astati astati ALLC ALLC	ne releases electro DW: astatine lower i DW: reactivity decre	than iodine ORA/ ng agent than iodine ons less well than iod n the group than iodi ases down the Grou ive (without referenc	ine/ ne p	sition in Group)	[1]
	(ii)	2Na ·	+ At ₂ \rightarrow 2NaAt W: multiples and N	·			[1]
							[Total: 5]
' (a)	lim (bo	newater oth lime	•	/milky/white precipita eeded for one mark) n then no marks	te		[1] [1]
(b)	IGN	NORE:	CaO + CO ₂ state symbols balanced equation	with other species o	n left or right		[1]
(c)	V – X – Y –	– coppe – magn – calciu – sodiu – zinc	esium m	correct orde	er = 2 marks		
	V X Y	– sodiu – magn – zinc – coppe – calciu	esium er	order rever	sed = 1 mark		[2]
	the the AL AL	e more LOW: I LOW: 1	reactive the metal, reactive the metal, nore reactive meta he more reactive th	the longer the time ta the slower the rate (d l (carbonates) take lo ne metal (carbonate) of the reactivity serie	of decompositi onger to decon the more stab	on) ORA/ pose	[1]



ALLOW:	Mark SchemeSyllabusGCE O LEVEL – May/June 20075070d formula for ethanoic acid OH in place of O – HO/2 D_2 H/COOH for carboxylic acid group $2 + 4H^+ \rightarrow 2Cu^{2+} + 2H_2O$	nbrios
correct f	$_{2}$ + 4H ⁺ \rightarrow 2Cu ²⁺ + 2H ₂ O prmulae of reactants and products (1 mark) palance (2 nd mark)	[2]
(c) M _r of [Cu x = 5	u(CH ₃ CO ₂) ₂] ₂ .Cu(OH) ₂ = 462 ;	[2]
	[Tot	al: 5]
tion B		
ALLOW:	sodium: sodium hydroxide and hydrogen ; ALLOW: correct formulae/correct formulae in equation NOT: sodium oxide/metallic hydroxide	
ALLOW: NOT: ma (1 mark magnesi	um: magnesium hydroxide and hydrogen; correct formulae/correct formulae in equation agnesium oxide can be scored for hydrogen in both of the above OR sodium hydroxide and um hydroxide in the above)	[1]
ALLOW: water an	reacts (much) faster than magnesium ORA any indication from observations e.g. lots of bubbles when sodium reacts with id none/hardly any when magnesium reacts	[1]
ALLOW:	electronic structure of Na ⁺ and O ^{2–} drawn with charge on top right 2,8 and symbol Na ⁺ and 2,8 and symbol O ^{2–} : charges in middle of the atom : Na ₂ O	[1] [1]
(c) 4Al+30		
	multiples and $2Al + 1/_2 O_2 \rightarrow Al_2O_3$	[1]
insoluble	ting point or high boiling point e in water	
does not	conduct electricity/poor electrical conductor/electrical insulator conduct heat/poor conductor of heat solid or hard	[2]
	vsical property: low melting point/low boiling point/poor or non-conductor of y/poor or non-conductor of heat; s/liquid	[1]
one che	mical property: reacts with water to give acid/reacts with alkalis (or named give salt	[1]

Page 7		Mark Scheme Syllabu	is a er
		GCE O LEVEL – May/June 2007 5070	1020
			22
10(a)	X =	activation energy;	76
, io (a)		LOW: E _a	19
		enthalpy change (of reaction);	
		ΔH	
	NO	T: energy change/heat given out	MMMM. PapaCambrid
(h)	(1)		
(a)	(i)	energy change is positive/enthalpy change is positive/ energy of 2NO is above that of N_2 and O_2 /	
		energy of N_2 and O_2 is below that of 2NO/	
		energy of product(s) is above that of reactants/	
		energy of reactants is below that of product(s)	[1]
		NOT: it (unspecified) gains energy	
		NOT: the product is above the reactants	
	(ii)	bond breaking is endothermic/absorbs energy/takes in energy;	[1]
		bond making is exothermic/releases energy/gives out energy;	[1]
		more energy is absorbed than released [NOTE: 3 rd mark can only be scored if first two marks have been gain	[1] ed]
		REJECT: answers in terms of energy involved in bond making/breaking	
		[more energy absorbed in bond breaking than release in bond making	-
		OWTTE = 3 marks]	
(\mathbf{c})	(i)	activation energy lowered/provides surface for molecules to rea	oct/makas the
(0)	(i)	reaction go by quicker alternative pathway	
		NOT: allows more frequent collisions	[1]
	(ii)	$2.4/2 = 1.2 \text{ dm}^3$ (unit required)	[1]
	(iii)	either:	
	(,		50
		$\frac{1.0}{1.2}$ × 100 (1 mark) = 83/83.3% (1 mark)	[2]
		ALLOW: ecf from part (ii)	
		1.0/24 = 0.04166 (mol N ₂) moles NO = 2 × 0.04166 = 0.0833 (moles) (1 mark)	
		predicted moles NO = $2.4/24 = 0.1$ (moles)	
		$100 \times 0.0833/0.1 = 83/83.3\% (2^{nd} mark)$	
			, , , , , , , , , , , , , , , , , , ,
			[Total: 10]

[Total: 10]

