www.papacambridge.com MARK SCHEME for the October/November 2007 question paper

5070 CHEMISTRY

5070/02

Paper 2 (Theory), maximum raw mark 75

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2007 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

				they are a second secon				
	Ра	ge 3	Mark Scheme	Syllabus 70 er				
		Ŭ	GCE O LEVEL – October/November 2007	5070 %				
A3	(a)	4		Cambrid				
	(b)	(i)	GenH _{2n+2}	30				
	• •			Som				
		(11)	нн					
			1 — Ge — Ge — H 					
			н н	[1]				
		(iii)	$Mg_2Ge + 4HCl \rightarrow 2MgCl_2 + GeH_4$	[1]				
	(c)	rea	ets with (both) acids and bases/alkalis	[1]				
	(0)	ALL	OW: have acidic and basic properties	[']				
	(d)	ado	(aqueous) sodium hydroxide other soluble hydroxide/amm	onia; [1]				
		gre	/-green/green precipitate/ppt/solid (both colour and ppt nee	ded) [1]				
A4	(a)	• na	2 of the following: notubes have hexagons (of C atoms) & diamond has tetrah	[2] nedrally arranged atoms				
		• na	notubes – each carbon bonded to 3 other carbons & diamo	ond – each carbon bonded to 4				
		others; • nanotubes have definite size to molecules OR are tubular & diamond has no fixed size/						
		tub	lar structure					
		• na	notubes have delocalised electrons & diamond has no delo	ocalised electrons				
	(b)	Hav	e strong bonds/have 3-dimensional structure of covalent bo ughout the structure/giant covalent lattice/giant covalent str	onds ructure [1]				
		ALL	OW: strong forces between atoms					
		NO	T: 'have covalent bonds' without further clarification					
	(c)	(i)	graphite	[1]				
		(ii)	electrons can move/are mobile/are delocalised	[1]				
			NOT: has free moving charges					
	, <u>.</u> .	·	· · · · · · · · · · · · · · · · · ·	/				
	(d)	(i)	tui outer shell (of electrons)/can't gain or lose electrons electrons/has outer octet of electrons	(easily)/outer shell has 8 [1]				
		<i></i>		L-J				
		(11)	20	[1]				
	(a)	<u> </u>	two other properties of transition motels a r					
	(e)	forr	r coloured compounds/variable valencies OR oxidation stat	es/				
		forr	n complex ions/high melting or boiling points (either)/high de	ensities [2]				

	Ра	ge 4		N	lark Scheme		Syllabus	er
				GCE O LEVEL	– October/November 200)7	5070	Da
A 5	(a)	chromatography; beaker/suitable receptacle with paper dipping into solvent and any two correct labels paper dipping into solvent with origin line and/or lowest spot above solvent level						els;
	(b)	(i)	C_2H_3	3O3				[1]
		(ii)	mole conc = 1.5 OR s M x 2	es potassium hydroxies s tartaric acid = $\frac{1}{2}$ x centration of tartaric a 5 x 10 ⁻² (mol dm ⁻³) suitable other method 20/1 = 0.1 x 6/2;1.5 x	de = 0.006 x 0.1 (6 x 10 ⁻⁴) answer to first mark (3 x 1 acid = (1000/20) x answer d e.g. MaVa/n = MbVb/n; x 10 ⁻² (mol dm ⁻³)	; 0 ^{–4}); to 2 nd ma	ırk	[3]
		(iii)	(7.4/	8) x 100 = 92.5 (%)				[1]
46	(a)	2KI	NO ₃ —	→ 2KNO ₂ + O ₂				[1]
	(b)	acio ero or p NO	d rain/ des b blants/ T: cau	/effect of acid rain or uildings/reacts with b /kills fish (in lakes)/ac uses pollution/harmfu	sulphur dioxide gas e.g. puildings or statues/forest o cidifies lakes breathing diff Il (unless specified)	death/kills iculties ir	s trees humans	[1]
	(c)	larg rate	je(r) s e of re	urface area (with sm action faster	aller particles)/surface are	a increas	sed;	[2]
	(d)	add whi	l (aqu te pre	eous) barium nitrate/ cipitate/solid (both w	lead nitrate; hite and ppt needed).			[2]
	(e)	(i)	(aqu goes ALL(e.g.	eous) potassium iodi s brown/goes red-bro OW: other possible e iron(II) to iron(III); gr	de; wn/iodine released xamples with correct colou een to yellow	ur change	9	[2]
		(ii)	any o gain goes	of: of electrons/decreas from 5 to –1/loss of	e in oxidation number or s oxygen (from chlorate)	tate/oxid	ation state	[1]

GCE O LEVEL - October/November 2007 5070 7 (a) carbon monoxide converted to carbon dioxide/2CO + $O_2 \rightarrow 2CO_2$; initrogen dioxide/other name nitrogen oxide(s) converted to nitrogen; by reaction with carbon monoxide/hydrocarbons (for all three individual marks ALLOW: from correct formulae in equations even if equation) (b) $C_7H_{16} + 11O_2 \rightarrow 7CO_2 + 8H_2O$ [1] (c) + by correct atomic masses Ni = 1.97/59 C = 1.6/12 O = 2.13/16 (Ni = 0.0334 C = 0.133 O = 0.133); + answer to first calculations by smallest number (0.0334); (Ni = 1 C = 4 O = 4); correct formula Ni(CO), ALLOW: NiC ₄ O ₄ [2] (d) (i) catalyst: substance which speeds up (the rate of) reaction; unsaturated: (molecule) containing double bonds (between carbon atoms) ALLOW: substance to which more hydrogen/H ₂ /H can be added [1] (ii) hydrogen/H ₂ [1] (a) acid which is only slightly or partly ionised/partly dissociated/not fully ionised NOT: only contains a few hydrogen ions [1] (b) $2C_2H_5CO_2H + Na_2CO_3 \rightarrow 2C_2H_5CO_2Na + CO_2 + H_2O$ [1] (c) (i) 24g of magnesium will need 2 x 74 g of propanoic acid to react so 4.8g magnesium requires 29.6g acid so acid (30g) in excess OR [2] (c) (i) 24g of magnesium equires 2.8.6g Mg so acid in excess (as only 4.8g Mg used) OR [3] [4] (b) 2C_2/H_5CO_2H + Na_2CO_3 - 2C_2/H_5CO_2Na + CO_2 + H_2O [1] [2] (c) (i) 24g of magnesium will need 2 x 74 g of propanoic acid to react so 4.8g magnesium requires 2.8.6g	P	aar	e 5			Ма	ark Scher	me		S۱	llabus	S	er
7 (a) carbon monoxide converted to carbon dioxide/2C0 + Q ₂ → 2CO ₂ ; nitrogen dioxide/other name nitrogen oxide(s) converted to nitrogen; by reaction with carbon monoxide/hydrocarbons (for all three individual marks ALLOW: from correct formulae in equations even if equation (b) Cr,H ₁₆ + 11O ₂ → 7CO ₂ + 8H ₂ O (c) + by correct atomic masses Ni = 1.97/59 C = 1.6/12 O = 2.13/16 (Ni = 0.0334 C = 0.133 O = 0.133); + answer to first calculations by smallest number (0.0334); (Ni = 1 C = 4 O = 4); correct formula Ni(CO) ₄ ALLOW: NIC ₄ O ₄ (d) (i) catalyst: substance which speeds up (the rate of) reaction; unsaturated: (molecule) containing double bonds (between carbon atoms) ALLOW: substance to which more hydrogen/H ₂ /H can be added (ii) hydrogen/H ₂ 8 (a) acid which is only slightly or partly ionised/partly dissociated/not fully ionised NOT: only contains a few hydrogen ions (f) 2C ₂ H ₅ CO ₂ H + Na ₂ CO ₃ → 2C ₂ H ₅ CO ₂ Na + CO ₂ + H ₂ O (c) (i) 24g of magnesium will need 2 x 74 g of propanoic acid to react so 4.8g magnesium requires 29.6g acid so acid (30g) in excess OR 74g of propanoic acid will need ½ x 24g of Mg to react so 30g of acid requires 4.86g Mg so acid in excess (as only 4.8g Mg used) OR mol Mg = 4.8/24 = 0.2 mol adi = 30/74 = 0.405(4)/0.41 mol; 2x moles of acid required to 1 mole Mg Mg = 0.4 x 74 = 29.6g compared with 30 g acid OR 0.405/2 moles = 0.2027/0.203 moles acid compared with 0.2 moles Mg Any two of mark for both molar masses i.e. 24 and 74 / · use of moles i.e. 4.8/24 or 30/74 · correct understanding of the 1:2 mole ratio (in omark for stating which reactant is in excess) (2) (ii) 0.2 mol H ₂ (allow ecf from part (i));					GCE C) LEVEL –	October	/Noveml	ber 2007		5070	°D3	
(b) $C_7H_{16} + 110_2 \rightarrow 7CO_2 + 8H_2O$ [1 (c) + by correct atomic masses Ni = 1.97/59 C = 1.6/12 O = 2.13/16 (Ni = 0.0334 C = 0.133 O = 0.133); + answer to first calculations by smallest number (0.0334); (Ni = 1 C = 4 O = 4); correct formula Ni(CO), ALLOW: NIC ₄ O ₄ [2 (d) (i) catalyst: substance which speeds up (the rate of) reaction; unsaturated: (molecule) containing double bonds (between carbon atoms) ALLOW: substance to which more hydrogen/H ₂ /H can be added [1] (ii) hydrogen/H ₂ [1] 8 (a) acid which is only slightly or partly ionised/partly dissociated/not fully ionised NOT: only contains a few hydrogen ions [1] (b) 2C ₂ H ₅ CO ₂ H + Na ₂ CO ₃ → 2C ₂ H ₅ CO ₂ Na + CO ₂ + H ₂ O [1] (c) (i) 24g of magnesium will need 2 x 74 g of propanoic acid to react so 4.8g magnesium requires 29.6g acid so acid (30g) in excess OR 74g of propanoic acid will need ½ x 24g of Mg to react so 30g of acid requires 4.86g Mg so acid in excess (as only 4.8g Mg used) OR mol Mg = 4.8/24 = 0.2 mol acid = 30/74 = 0.405(4)/0.41 mol; 2x moles of acid required to 1 mole Mg Mg = 0.4 x 74 = 29.6g compared with 30 g acid OR 0.405/2 moles = 0.2027/0.203 moles acid compared with 0.2 moles Mg Any two of • mark for both molar masses i.e. 24 and 74 / • use of moles i.e. 4.8/24 or 30/74 • correct understanding of the 1:2 mole ratio (no mark for stating which reactant is in excess) [2] (ii) 0.2 mol H ₂ (allow ecf from part (i));	7 (a)) c n b (1	carbon monoxide converted to carbon dioxide/2CO + $O_2 \rightarrow 2CO_2$; nitrogen dioxide/other name nitrogen oxide(s) converted to nitrogen; by reaction with carbon monoxide/hydrocarbons (for all three individual marks ALLOW: from correct formulae in equations even if equ								if equation	mbride on)	
(c) + by correct atomic masses Ni = 1.97/59 C = 1.6/12 O = 2.13/16 (Ni = 0.0334 C = 0.133 O = 0.133); + answer to first calculations by smallest number (0.0334); (Ni = 1 C = 4 O = 4); correct formula Ni(CO) ₄ [3 ALLOW: NiC ₄ O ₄ [4] (d) (i) catalyst: substance which speeds up (the rate of) reaction; unsaturated: (molecule) containing double bonds (between carbon atoms) ALLOW: substance to which more hydrogen/H ₂ /H can be added [1] (ii) hydrogen/H ₂ [1] (ii) hydrogen/H ₂ [1] (b) $2C_2H_5CO_2H + Na_2CO_3 \rightarrow 2C_2H_5CO_2Na + CO_2 + H_2O$ [1] (c) (i) 24g of magnesium will need 2 x 74 g of propanoic acid to react so 4.8g magnesium requires 29.6g acid so acid (30g) in excess OR 74g of propanoic acid will need ½ x 24g of Mg to react so 30g of acid requires 4.86g Mg so acid in excess (as only 4.8g Mg used) OR mol Mg = 4.8/24 = 0.2 mol acid = 30/74 = 0.405(4)/0.41 mol; 2x moles of acid requires 4.8 g Mg Mg = 0.4 x 74 = 29.6g compared with 30 g acid OR 0.405/2 moles = 0.2027/0.203 moles acid compared with 0.2 moles Mg Any two of • mark for both molar masses i.e. 24 and 74 / • use of moles i.e. 4.8/24 or 30/74 • correct understanding of the 1:2 mole ratio (no mark for stating which reactant is in excess) [2]	(b)) C	C7H	I ₁₆ + 1 ⁻	$1O_2 \rightarrow 7C$	CO2 + 8H2C)						[1]
 (d) (i) catalyst: substance which speeds up (the rate of) reaction; unsaturated: (molecule) containing double bonds (between carbon atoms) ALLOW: substance to which more hydrogen/H₂/H can be added (ii) hydrogen/H₂ (ii) hydrogen/H₂ (i) hydrogen/H₂ (i) hydrogen/H₂ (i) acid which is only slightly or partly ionised/partly dissociated/not fully ionised NOT: only contains a few hydrogen ions (b) 2C₂H₅CO₂H + Na₂CO₃ → 2C₂H₅CO₂Na + CO₂ + H₂O (c) (i) 24g of magnesium will need 2 x 74 g of propanoic acid to react so 4.8g magnesium requires 29.6g acid so acid (30g) in excess OR 74g of propanoic acid will need ½ x 24g of Mg to react so 30g of acid requires 4.8g Mg used) OR mol Mg = 4.8/24 = 0.2 mol Mg = 0.4 x 74 = 29.6g compared with 30 g acid OR 0.405(2 moles = 0.2027/0.203 moles acid compared with 0.2 moles Mg Any two of mark for both molar masses i.e. 24 and 74 / use of moles i.e. 4.8/24 or 30/74 correct understanding of the 1:2 mole ratio (no mark for stating which reactant is in excess) (ii) 0.2 mol H₂ (allow ecf from part (i)); 	(c)) ÷ (I ÷ (I C A	- by Ni = - an Ni = Ni =	y corre = 0.03 nswer = 1 C rect for .OW: N	ct atomic n 34 C = 0.1 to first calc = 4 O = 4 mula Ni(Co NiC ₄ O ₄	nasses Ni = 33 O = 0. ulations by); O) ₄	= 1.97/59 133); / smallest	C = 1.6	/12 O = 2.1 (0.0334);	13/16			[3]
ALLOW: substance to which more hydrogen/H2/H can be added[1](ii) hydrogen/H2[1]8 (a) acid which is only slightly or partly ionised/partly dissociated/not fully ionised NOT: only contains a few hydrogen ions[1](b) $2C_2H_5CO_2H + Na_2CO_3 \rightarrow 2C_2H_5CO_2Na + CO_2 + H_2O$ [1](c) (i) 24g of magnesium will need 2 x 74 g of propanoic acid to react so 4.8g magnesium requires 29.6g acid so acid (30g) in excess OR[1]74g of propanoic acid will need $\frac{1}{2} \times 24g$ of Mg to react so 30g of acid requires 4.86g Mg so acid in excess (as only 4.8g Mg used) OR mol Mg = 4.8/24 = 0.2 mol acid = 30/74 = 0.405(4)/0.41 mol; 2x moles of acid required to 1 mole Mg Mg = 0.4 x 74 = 29.6g compared with 30 g acid OR 0.405/2 moles = 0.2027/0.203 moles acid compared with 0.2 moles Mg Any two of • mark for both molar masses i.e. 24 and 74 / • use of moles i.e. 4.8/24 or 30/74 • correct understanding of the 1:2 mole ratio (no mark for stating which reactant is in excess)[2](ii) 0.2 mol H2 (allow ecf from part (i));[1]	(d)) (i	i)	cataly unsat	vst: substar urated: (mo	nce which s plecule) co	speeds up ntaining o	p (the rat double bo	e of) reactio onds (betwe	on; en carb	on atoms)		[1]
(ii) hydrogen/H ₂ [1 (ii) hydrogen/H ₂ [1 (i) acid which is only slightly or partly ionised/partly dissociated/not fully ionised NOT: only contains a few hydrogen ions [1 (b) $2C_2H_5CO_2H + Na_2CO_3 \rightarrow 2C_2H_5CO_2Na + CO_2 + H_2O$ [1 (c) (i) 24g of magnesium will need 2 x 74 g of propanoic acid to react so 4.8g magnesium requires 29.6g acid so acid (30g) in excess OR 74g of propanoic acid will need $\frac{1}{2}x 24g$ of Mg to react so 30g of acid requires 4.86g Mg so acid in excess (as only 4.8g Mg used) OR mol Mg = 4.8/24 = 0.2 mol acid = 30/74 = 0.405(4)/0.41 mol; 2x moles of acid required to 1 mole Mg Mg = 0.4 x 74 = 29.6g compared with 30 g acid OR 0.405/2 moles = 0.2027/0.203 moles acid compared with 0.2 moles Mg Any two of mark for both molar masses i.e. 24 and 74 / use of moles i.e. 4.8/24 or 30/74 correct understanding of the 1:2 mole ratio (no mark for stating which reactant is in excess) (ii) 0.2 mol H ₂ (allow ecf from part (i)); (ii) 0.2 mol H ₂ (allow ecf from part (i));				ALLO	W: substar	nce to whic	ch more h	iydrogen/	/H ₂ /H can be	e added			[1]
 acid which is only slightly or partly ionised/partly dissociated/not fully ionised NOT: only contains a few hydrogen ions [1] (b) 2C₂H₅CO₂H + Na₂CO₃ → 2C₂H₅CO₂Na + CO₂ + H₂O [1] (c) (i) 24g of magnesium will need 2 x 74 g of propanoic acid to react so 4.8g magnesium requires 29.6g acid so acid (30g) in excess OR 74g of propanoic acid will need ½ x 24g of Mg to react so 30g of acid requires 4.86g Mg so acid in excess (as only 4.8g Mg used) OR mol Mg = 4.8/24 = 0.2 mol acid = 30/74 = 0.405(4)/0.41 mol; 2x moles of acid required to 1 mole Mg Mg = 0.4 x 74 = 29.6g compared with 30 g acid OR 0.405/2 moles = 0.2027/0.203 moles acid compared with 0.2 moles Mg Any two of • mark for both molar masses i.e. 24 and 74 / • use of moles i.e. 4.8/24 or 30/74 • correct understanding of the 1:2 mole ratio (no mark for stating which reactant is in excess) [2 		(i	i)	hydro	gen/H ₂								[1]
(b) $2C_2H_5CO_2H + Na_2CO_3 \rightarrow 2C_2H_5CO_2Na + CO_2 + H_2O$ [1 (c) (i) 24g of magnesium will need 2 x 74 g of propanoic acid to react so 4.8g magnesium requires 29.6g acid so acid (30g) in excess OR 74g of propanoic acid will need ½ x 24g of Mg to react so 30g of acid requires 4.86g Mg so acid in excess (as only 4.8g Mg used) OR mol Mg = 4.8/24 = 0.2 mol acid = 30/74 = 0.405(4)/0.41 mol; 2x moles of acid required to 1 mole Mg Mg = 0.4 x 74 = 29.6g compared with 30 g acid OR 0.405/2 moles = 0.2027/0.203 moles acid compared with 0.2 moles Mg Any two of • mark for both molar masses i.e. 24 and 74 / • use of moles i.e. 4.8/24 or 30/74 • correct understanding of the 1:2 mole ratio (no mark for stating which reactant is in excess) [2	8 (a)	 acid which is only slightly or partly ionised/partly dissociated/not fully ionised NOT: only contains a few hydrogen ions 								[1]			
 (c) (i) 24g of magnesium will need 2 x 74 g of propanoic acid to react so 4.8g magnesium requires 29.6g acid so acid (30g) in excess OR 74g of propanoic acid will need ½ x 24g of Mg to react so 30g of acid requires 4.86g Mg so acid in excess (as only 4.8g Mg used) OR mol Mg = 4.8/24 = 0.2 mol acid = 30/74 = 0.405(4)/0.41 mol; 2x moles of acid required to 1 mole Mg Mg = 0.4 x 74 = 29.6g compared with 30 g acid OR 0.405/2 moles = 0.2027/0.203 moles acid compared with 0.2 moles Mg Any two of • mark for both molar masses i.e. 24 and 74 / • use of moles i.e. 4.8/24 or 30/74 • correct understanding of the 1:2 mole ratio (no mark for stating which reactant is in excess) [2 	(b)) 2	2C ₂ ł	H₅CO₂	₂H + Na₂CC	$D_3 \rightarrow 2C_2$	H₅CO₂Na	ι + CO ₂ +	· H ₂ O				[1]
(ii) 0.2 mol H ₂ (allow ecf from part (i));	(c)) (i	i)	24g o so 4.8 so ac OR 74g o so 30 so ac OR Mol a $2x \mod Mg =$ OR 0.405 Any t • mari • use • corra (no m	f magnesiu g magnes id (30g) in f propanoio g of acid re- id in exces 1g = 4.8/24 cid = 30/74 oles of acid 0.4 x 74 = /2 moles = wo of k for both n of moles i ect underst park for stat	im will nee ium require excess c acid will r equires 4.8 s (as only 4 = 0.2 t = $0.405(4$ required to 29.6g com 0.2027/0.2 nolar mass e. $4.8/24$ o canding of to ing which to	the d 2 x 74 g es 29.6g a meed $\frac{1}{2}$ x 6g Mg 4.8g Mg u 4.8g Mg u 4)/0.41 mole pared wit 203 moles ses i.e. 24 r 30/74 the 1:2 m reactant i	g of propa acid 24g of M used) ol; Mg th 30 g ac s acid co 4 and 74 nole ratio is in exce	anoic acid to lg to react cid mpared with /	o react	oles Mg		[2]
		(ii	i)	0.2 m	ol H ₂ (allov	v ecf from i	part (i));	0.00					[1]

Pa	ge 6	6	Mark Scheme Syllabus	· A er
	-		GCE O LEVEL – October/November 2007 5070	Noo.
(d)	(i)	alcol ALLO	hols and carboxylic acids are monomers (both required); OW: alkanoic acids/OH and COOH or CO_2H	anthic
	(ii)	cond	densation	'9e.ce
	(iii)	cloth	ning/named clothing/sails/conveyor or fan belts/	[1]
(e)	one • la • in ALI car • re ALI	e from ndfill - cinera _OW: bon di cyclin _OW:	n: – doesn't (bio)degrade/ ation/burning – <u>harmful</u> substances/harmful fumes/harmful gases prod stated harmful gas with correct effect e.g. hydrogen chloride acid rain ioxide global warming etc. ng – difficult to sort out different polymers expensive/time consuming	uced / [1]
9 (a)	Any • hy • pr ALI • la • le	y 2 fro ydroge oduce _OW: rger a ss dei	om: en can be obtained from a renewable resource or water/ es <u>only</u> water as a product/no carbon monoxide produced non-polluting/less polluting amount of energy released per g or unit mass; nse/lighter/lower mass (as liquid compared with petrol)	[2]
(b)	flan be	nmabl storec	le OR explosive OR implication of this/method of storage is expensiv d under high pressure	e OR needs to [1]
(c)	(i)	oxida NOT ALL(ation because loss of electrons ⁻ : redox/OH [−] loses electrons OW: <u>hydrogen/H</u> ₂ increases oxidation number/gains oxygen	[1]
	(ii)	O ₂ +	$2H_2O + 4e^- \rightarrow 4OH^-$	[1]
(d)	(i)	2H ₂ ·	$+ O_2 \rightarrow 2H_2O$	[1]
	(ii)	hydr	ochloric acid/sulphuric acid (or formulae)	[1]
(e)	(i)	mag argu Mg I surfa	nesium is more reactive/higher in the reactivity series/better reduct ment; loses OR gives off electrons more readily than copper/electron den ace of Mg/electrons flow from more reactive to less reactive metal	tant or reverse sity greater on [2]
	(ii)	mag copp ALL(nesium would react with it/the metals would react with it/ per would react with it/a precipitate of silver would be formed OW: silver nitrate is very expensive/lower conductivity	[1]

I uge I	Mark Scheme	Syllabus	er er
	GCE O LEVEL – October/November 2007	5070	Day
10(a) any 2 o • silicate ALLOW • silicate calcium • all the some a • silicat	f: e has regular arrangement of atoms and soda-lime gla /: e.g. soda lime glass has a less regular arrangement e has no ions/named ion(s)/all atoms (covalently) bo /sodium ions; [ALLOW: has oxygen ions] oxygen atoms are (covalently) bonded to two silicon a re only bonded by one (covalent) bond; e has larger spaces/an open structure and soda-lin	ass has irregular arra of atoms ORA onded and soda lim atoms in silicate but me glass has a mo	e glass h in soda lime ore compact
(b) Ca ²⁺ /Na ALLOW NOT: io	e/collapsed structure a ⁺ <u>ions</u> can move /: <u>ions</u> can move/ <u>ions</u> are free to move ons are delocalised/ions are free		[2]
(c) CaCO ₃ ($(s) \rightarrow CaO(s) + CO_2(g)$		[1]
(d) (i) hyd	droxide/OH [−]		[1]
(ii) Pb ² lead unt	$^{2+}$ + 2OH ⁻ \rightarrow Pb(OH) ₂ (complete balanced equation d hydroxide formed/lead hydroxide is white/hydroxi balanced equation = 1 mark	= 2 marks) de ions react with	[2] the lead or

(gas) measured at various time intervals/take readings of clock every so often; NOT: use a stop clock without any qualification of how it is used OR

use (sensitive) balance/top pan balance; record mass; at various time intervals; [3]