UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS **GCE Ordinary Level**

www.papacambridge.com MARK SCHEME for the May/June 2009 question paper

for the guidance of teachers

5070 CHEMISTRY

5070/02

Paper 2 (Theory), maximum raw mark 75

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

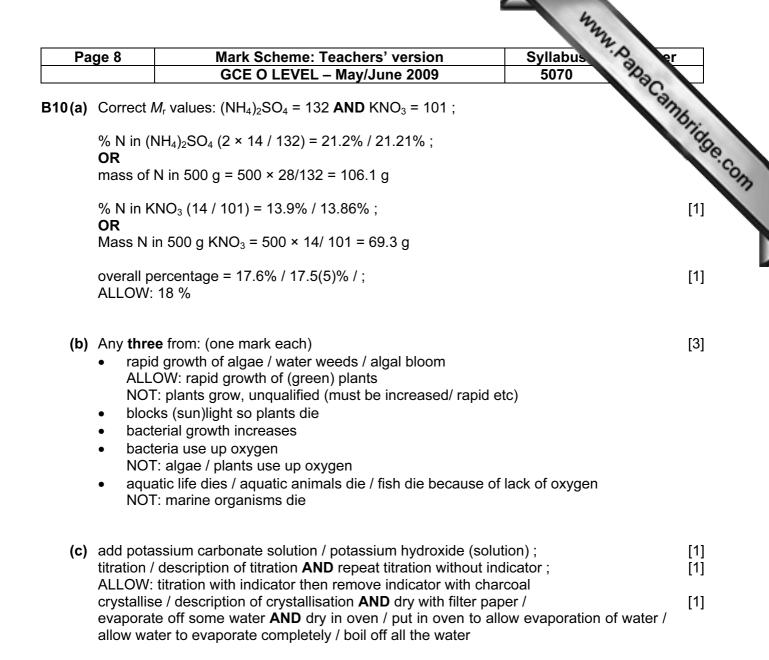
CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2009 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Pa	ige 2		/llabus Page er 5070
		Section A	Can
.1 (a)	NOT: Mn	(V) oxide / V ₂ O ₅ / vanadium oxide ;	/llabus 5070 AbaCambrid
(b)	copper(I)	I) chloride / CuC l_2 / copper chloride / copper ;	[1]
(c)	ethanoic	acid / ethanoic / correct formula ;	[1]
(d)	potassiur NOT: pot	m dichromate(VI) / (potassium) dichromate / correct formula tassium	ı; [1]
(e)		/ (potassium) dichromate(VI) / manganese(IV) oxide ; (concentrated) sulfuric acid	[1]
			[Total: 5]
\2 (a)	ALLOW: NOT: the NOT: no NOT: has NOT: we	ces <u>between layers</u> / van der Waals forces <u>between layers</u> ; weak bonds <u>between layers</u> e forces are weak / has weak forces between atoms forces / bonds between layers s layers and weak forces eak forces between molecules eak electrostatic forces between layers	[1]
		an slide / slip ; oms slide over each other	[1]
(b)	(all) elect	e / no moving electrons / no delocalised electrons / trons in covalent bonds ; no free electrons / no sea of electrons :: no ions	[1]
(c)	 high IGN0 lots of ALL0 ALL0 ALL0 ALL0 ALL0 NOT 	ORE: strong / tough melting point ORE: high boiling point <u>of strong</u> (covalent) bonds OW: giant structure of strong bonds OW: has strong bonds throughout OW: all the bonds are difficult to break / takes a lot of ene	

	age 3	1	Mark Scheme: Teachers' version	n Syllabus	er er
			GCE O LEVEL – May/June 2009	5070	Day
3 (a)) (i)	NOT: catho ions: l	e: oxygen / O ₂ ; : O ode: copper / Cu ; H⁺, OH⁻, SO₄ ^{2−} ; nree needed for the mark)		A. Papacambridge.
	(ii)	hydro easi <u>ei</u> hydro ALLO	ogen low <u>er</u> in reactivity series (than sodium) ogen low <u>er</u> in discharge series (than sodium <u>er</u> to reduce hydrogen <u>ions</u> (than sodium) / ogen <u>ions</u> gain electrons more easily ; DW: it is lower in reactivity series : hydrogen is easier to discharge (than sodiu))/	[1]
	(iii)	idea c chlorid NOT: NOT:	ide ions lower in discharge series than hydro of selective discharge of chloride ions/ ide ion concentration greater than hydroxide : reference to chlor ine / chlor ine ions : lower in discharge series than oxygen : chloride ions lower in reactivity than hydrox	e ion concentration ;	[1]
(b)) (i)	makin	cation of copper/ ng high grade copper/ DRE: uses of copper / for coating metals / fo	r electroplating	[1]
	(ii)	currer ALLO	erature: no effect / no change ent: increasing current increases mass (of co DW: mass proportional to current	opper) ORA	[1] [1]
		time: ALLO	DW: increase of 1 amp doubles the mass increasing time increases mass (of copper) DW: mass proportional to time DW: with the passage of time mass increase		[1]
					[Total: 9]
4 (2)	Ch		noutron = 0 / zoro / nono AND		
i (a)		arges:	neutron = 0 / zero / none AND proton = + / plus 1 / +1 ;		[1]
	Rel	ative m	mass: electron = 0 / negligible / 1/1840 / 1/2 neutron = 1 / one	2000 / 0.0005 AND	[1]
(b)) ¹¹ ₅ B				[2]
			r correct nucleon and proton number as sho r correct symbol ;	wn ;	
(c)			ns in two shells AND 5 protons shown ; f neutrons other than 6 ;		[1] [1]
			between 3 and 10 neutrons		

Pa	ige 4	Mark Scheme: Teachers' version S GCE O LEVEL – May/June 2009	Syllabus Providence Syllabus Providence Syllabus Providence Provid
5 (a)		chlorine atoms bonded to carbon by pair of electrons ; ructure correct i.e. 6 unbonded electrons on each chlorine	Syllabus 5070 ; ; [1]
(b)	correct c	2,8,8 and Cl^- as 2,8,8 in diagram or as numbers ; harges at top right of each structure ; correct ions shown as Ca ²⁺ and Cl^-	[1] [1]
			[Total: 4]
5 (a)	KNO ₃ / C	a(NO ₃) ₂ / Fe(NO ₃) ₂ ;	[1]
(b)	(both aci	cause <u>H⁺</u> / <u>hydrogen ions</u> present ; dic and hydrogen ions needed) drogen and nitrate ions	[1]
(c)		25 × 0.450 = 11.25 / 11.3 / 11 ; 66 × 11.25 = 630 (g) ;	[1] [1]
(d)	of iron(II NOT: iro white pre ALLOW:	reen precipitate ;) hydroxide ; n(III) hydroxide / ppt of iron / ppt due to iron(II) ions ecipitate / ppt of calcium hydroxide formed ; idea of calcium hydroxide precipitate masked / cannot be ite ppt dissolves in excess	[1] [1] seen
(e)	add alum heat / wa gas giver ALLOW: NOT: sm	ess) sodium hydroxide (solution) ; ninium / Dervarda's alloy ; nrm ; n off turns (moist) red litmus blue/ ammonia gas given off / elly gas given off nis mark is consequential on both the reagents A <i>l</i> and soc	[1] [1] [1] [1] dium hydroxide being
	mix solut add <u>conc</u> idea of m brown rin NOTE: tl	ion with (freshly made) iron(II) sulfate (solution) ; (1 mark) <u>centrated</u> sulfuric acid ; (1 mark) naking layer of sulfuric acid over the solution / idea of two l ng (at interface) ; (1 mark) nis mark is consequential on both the reagents being cor	ayers ; (1 mark)
	does not	have to be concentrated	[Total: 11]


Page 5		e 5 Mark Scheme: Teachers' version		Syllabus Syllabus
			GCE O LEVEL – May/June 2009	5070 22
7 (a)	ALL	OW:	ucture of chloroethene ; CH₂=CHC <i>l</i> CHC <i>l</i>	Syllabus 5070 Burger 5070 Burger Burg
(b)	(i)		$_{2}H_{3}Cl - + 5O_{2} \rightarrow 2HCl + 4CO_{2} + 2H_{2}O$ W: multiples / fractions	[
	(ii)		m chloride ; W: CaC <i>l</i> ₂	[
(c)	corr	ect us nylon clothi (bristl IGNC polye teryle PET: mylar polye IGNC Kevla	ng / fishing lines / fishing nets / ropes / stockings es) / balloons / guitar strings / racquet strings / petro RE: fibres without qualifications ster / terylene / mylar / PET (1) ne: clothing / sheets / pillowcases / furniture cover ropes / sails / machinery belts bottles and any of the above : balloons ster: any of the above (1) RE: fibres without qualifications	ol tanks (1) rings / curtains / carpets /

[Total: 5]

Pa	ge 6	Mark Scheme: Teachers' version	Syllabus er	
		GCE O LEVEL – May/June 2009	5070	
		Section B	Can	26.
3 (a)	NOT: ide Any one • sep diffe NO com • sep diffe	arated according to different boiling point (from other fr erent boiling points / has specific range of boiling points T: incorrect references to petrol e.g. petrol has the l nes off at the top arated according to size of molecules (from other fra erent chain lengths ;	ab actions) / fractions have ; owest boiling points so actions) / fractions have	
	•	ol made by cracking of long chained hydrocarbons / gas ation showing cracking	s oil / kerosene ;	[
(b)	(i) 108	300 g / 10.8 kg		[′
	mol	es carbon dioxide = 10 800 / 44 = 245.45 ; es octane = 245.45 / 8 = 30.68 ; OW: 1 mark for showing division of moles of carbon di	ovido by 8 or $16/2 M$ of	[^ [^
	octa Mas ALL	ane 114 ; ss of octane = $114 \times 30.68 = 3497.5$ (g) / 3498 (g) / 3500 OW: 1 mark for multiplying moles of octane by 114 with sulation.	0 (g)	[^ [^
(c)	NO / nitr	verted to carbon dioxide ; rogen oxide(s) converted to nitrogen ; $CO + NO \rightarrow CO_2 + \frac{1}{2}N_2 = 2$ marks (even if not correct	tly balanced)	[′ [′
(d)		/ effect of acid rain/ smog ; E: breathing difficulties / irritation of nose and throat		[

[Total: 10]

Page	e 7	Mark Scheme: Teachers' version	Syllabus er
		GCE O LEVEL – May/June 2009	5070 73
(a) A • •	 	three of: (1 mark each) have general formula / each member differs by CH ₂ grou have same functional group have similar chemical properties physical properties show a trend / example of physical p boiling points increase with longer carbon chain	9
(b) (i	i) a	any value between 105 and 130°C (actual = 117°C)	[1]
(ii	i) (C ₆ H ₁₃ OH	[1]
(c) (i		$C_2H_4 + H_2O \rightarrow C_2H_5OH$ IGNORE: state symbols	[1]
(ii	Í A	addition ALLOW: hydration / additional NOT: exothermic	[1]
	ise c DR	of moles e.g. 180 g glucose \rightarrow 2 × 46 or 92 g ethanol	[1]
1(00 r	moles glucose (18000 / 180) \rightarrow 200 moles ethanol ;	
0	DR	retical yield calculated e.g. 18 kg glucose \rightarrow 9.2 kg eth × 46 = 9200 g ethanol ;	anol [1]
20	.00 /	$^{40} - 9200 \text{ g ethanol},$	
	∕ vie	eld calculated e.g. 100 × 0.92/9.2 = 10% ;	[1]
%	• ງ		

[Total: 10]

	e 9 Mark Scheme: Teachers' version	Syllabus	er	
		GCE O LEVEL – May/June 2009	5070	
I1(a) (i (ii	to + NO ⁻ i) Fe ²⁻	T: incorrect oxidation numbers $(aq) + 2OH(aq) \rightarrow Fe(OH)_2(s)$	Syllabus 5070 idation number goes fr	mbrios [2]
	corr	rect balanced equation = 1 mark rect state symbols = 1 mark ark for state symbols dependent on correct formulae)		
(b) (i	stop stop stop ALL NO	os water from getting to the surface (of the iron) / os oxygen getting to surface (of the iron) / os oxygen / water getting to the iron / os air getting to the iron / OW: acts as a <u>protective barrier</u> / <u>layer</u> T: ideas about sacrificial protection T: tin does not react with water / air / tin less reactive	e than iron	[1]
(ii		n tin: oxygen / water can react with the iron (where it T: iron more reactive than tin	is scratched) ;	[1]
	•	n zinc any two of: zinc more reactive than iron NOT: zinc oxide protective layer zinc is sacrificial metal / idea of sacrificial protecti readily than iron / zinc reacts first NOT: zinc rusts more readily than iron zinc loses electrons more readily than iron NOT: zinc displaces iron	ion i.e. zinc corrodes more	[2]
la la N	ayer of ayer of IOT: ox	er of (aluminium) oxide that will not flake off / insoluble / unreactive (aluminium) oxide / impermeable (aluminium) oxide / protective oxide lay kide coating without further qualification rms a protective layer with oxygen	yer /	[1]
• •	coo ALL	use ; k cans / car bodies / aircraft bodies / high voltage ele king foil / window frames / ladders / .OW: cooking utensils / mirrors (as does not corrode T: for cutlery	-	[1]
	orrect e .g. drin car airc	explanation related to specific use stated ; ks cans \rightarrow will not react with water / acids bodies \rightarrow will not corrode raft bodies \rightarrow lightweight / low density ctricity cables \rightarrow lightweight / good conductor of elect	tricity	[1]