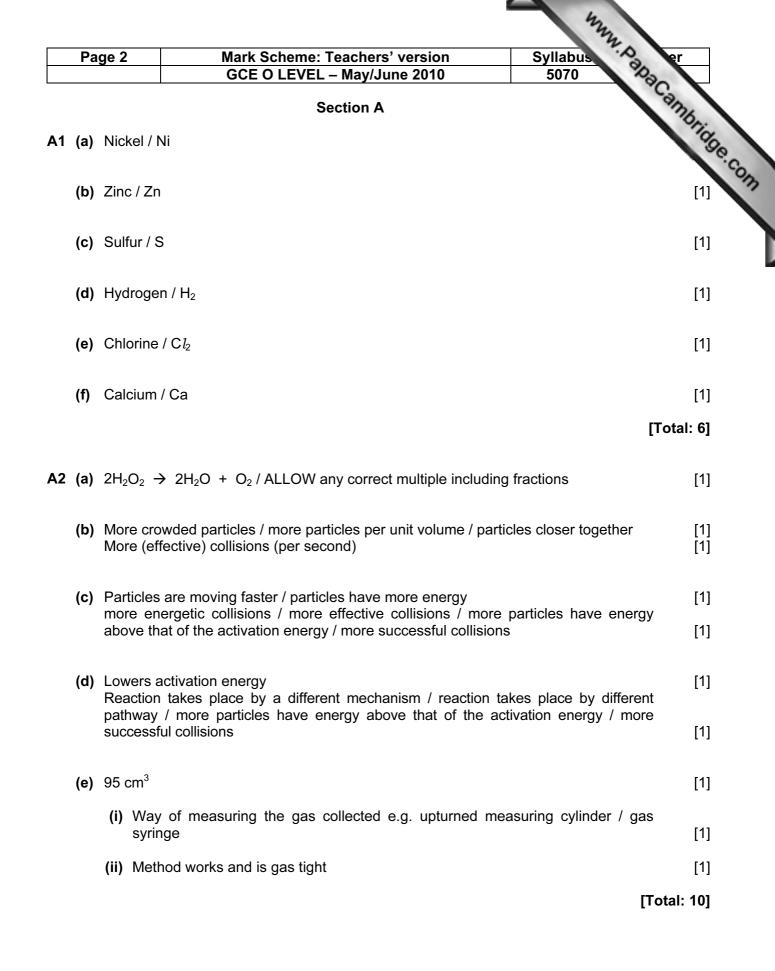
UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS **GCE Ordinary Level**

www.papacambridge.com MARK SCHEME for the May/June 2010 question paper

for the guidance of teachers

5070 CHEMISTRY

5070/21


Paper 2 (Theory), maximum raw mark 75

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2010 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Pa	age 3	Mark Scheme: Teachers' version Syllabus	Syllabus A	er
		GCE O LEVEL – May/June 2010	5070	
A3 (a)		/ relative atomic mass / calculated mole ratio 1.01 : 0.5 / smallest number to get ratio	Syllabus 5070 50 : 2.02 (K:Fe:O)	
	M _r = 198	expressions to calculate the percentage by mass	(1 (1	
(b)		160 25 / ecf from wrong <i>M</i> _r (1) ALLOW 2 marks for 0.0125	with no working (2)
	(ii) 0.08		(1)
	• •	D_3 because you need 0.125 mole of KOH / Fe ₂ O ₃ because you need 0.125 mole of KOH / Fe ₂ O ₃ because react with 0.008 mole of Fe ₂ O ₃ (1) ALLOW ecf from particular terms of the second seco) [4
(c)	Reductio	n since electrons are gained / reduction since oxidatio	n number decreases	[1
(d)	K ₂ FeO ₄ i	s an oxidising agent / K_2 FeO ₄ can be reduced		[1
			Γ	otal: 8

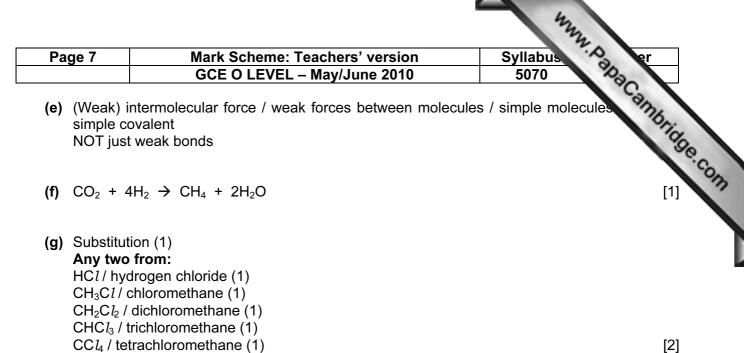
A4 (a)

1	ion		numbere	otomio	maaa	
	ion		number o		atomic	mass
		protons	neutrons	electrons	number	number
	Mg ²⁺			10	12	24
	Br⁻	35	46	36		

All **six** correct (3) **Four** or **five** correct (2) **Two** or **three** correct (1)

- (b) (Two) sodium ions with Na⁺ and 2.8 (1) ALLOW [Na]⁺ IGNORE missing inner shells One oxide ion with O²⁻ and 2.8 (1) IGNORE missing inner shells ALLOW one mark for correct charges on both ions / one mark for both electronic configurations correct
- (c) Strong (electrostatic) attraction between ions difficult to break / strong ionic bonds difficult to overcome / large amount of energy to separate the ions / giant structure so needs lots of energy to separate the particles / giant structure so needs lots of energy to break the bonds / lots of energy to break the ionic lattice
- (d) lons cannot move / free ions (1) IGNORE electrons cannot move [1]

[Total: 7]


[1]

[3]

	Ba	~~ 1		Mark Schemer Tasshore' version Syllabu]
	Pa	ge 4	·	Mark Scheme: Teachers' versionSyllabusGCE O LEVEL – May/June 20105070	ba	
A5	(a)	(i)	Addi	ition (1) ALLOW additional	Can	bridge.com
		(ii)				1140
		-	H \	н /		·
			C:			17
			Н	$H / CH_2 = CH_2 $ (1)		[2]
	(b)	(i)	Any	two from		
	\ <i>'</i>	1-7	redu	ces litter / reduces need for land fill sites (1)		-
			save	ices need for incineration / produce less toxic gases when burnt (1) es a finite resource / metal ores are a finite resource / crude oil is a fir	nite	
				urce (1) es energy (1)		
			Less	environmental damage due to mining activities / AW (1)	(0)	
				less pollution unless qualified / NOT costs less unless qualified	(2)	
		(ii)		one from cult to sort substances (1)		
				cult to collect all the mobile phones (1)	(1)	[3]
	<i>·</i> 、				· • \	
	(c)		•	te – copper sulfate / CuSO₄ impure copper	(1) (1)	
		cath	node -	– (pure) copper one mark if impure and pure copper are reversed	(1)	[3]
		/\∟_	.0			
	(d)	(i)		e packed positive ions (attracted to)	(1)	
				tive ions are touching or almost touching each other. Can be labelled w a positive sign	/ith	
			-	ocalised) electrons	(1)	
		(ii)	Elect	trons move / delocalised electrons / free electrons / sea of electrons	(1)	[3]
	(e)	(i)		/ it to make steel / galvanised / tin plate / use of a sacrificial metal / paint OW coat with oil	(1)	
		/ii)		one from		
		(יי <i>י</i>	Sacr iron	rificial protection – Metal in sacrificial metal loses electrons more easily th / sacrificial metal oxidised in preference to iron / sacrificial metal mo		
			Pain	tive than iron (1) t / oil / tin / zinc – stops oxygen and/or water reaching surface of iron (1) / – iron surrounded by layer of chromium oxide (1)		
		(iii)	Has	a (protective) layer of (aluminium) oxide (1)		[3]
					[Total:	: 14]
					-	-

Pa	age 5		Mark Scheme: Teachers' version Syllabus	er
			GCE O LEVEL – May/June 2010 5070	Da
			Section B	apacambridg
6 (a)	Boi	ling po	pint / boiling temperature	Tide
(b)) C ₁₂	H ₂₆		[1]
(c)) N ₂	+ O ₂	→ 2NO	[1]
			nitrogen makes 60 kg of NO nitrogen makes 117.8 kg of NO	[1] [1]
	ALI	.ŎW e	ecf from wrong equation.	r.1
	lf N	₂ + ($D_2 \rightarrow NO$ the answer will be 58.9 kg	
(d)) (i)	2SO	$_2$ + O ₂ \rightarrow 2SO ₃	[1]
	(ii)	NO i	s regenerated at the end / NO is not used up	[1]
	()		s unchanged is not sufficient	[.]
(e)	NO	reduc	ted to N_2 because it loses oxygen or gains electrons	[1]
(0)	ALI	_OW r	eference to decrease in oxidation number	
			sed because it gains oxygen or loses electrons to form CO ₂ eference to increase in oxidation number	[1]
(f)	9.0	3 × 10	24	[1]
				[Total: 10]
7 (a)	But	yne /	out-1-yne / but-2-yne	[1]
()			n the line takes precedence	
(b)) The	e displ	ayed formula for CH₃CCH	[1]
			CH ₃ CCH providing triple bond is clearly shown	
(c)) (i)	60 –	85 °C	[1]
(0)	, (-)		ver on the line takes precedence	[.]
	(ii)	C ₆ H₁	0	[1]
		Ansv	ver on the line takes precedence	
(d)) (i)	Bond	breaking takes in energy and bond forming releases energy (1)	
. ,		More	energy is released than taken in (1) Second marking point is depend	
		on fii	st marking point	[2]
	(ii)		s of $C_2H_2 = 41.7$ (1)	
		but	gy released = 58750 kJ (2) ALLOW ecf mole × 1410	[2]

Pa	ige 6		Mark Scheme: Teachers' version Syllabus GCE O LEVEL – May/June 2010 5070	ap er
(e)	(i)	C ₂ H ₂	$_{2}Br_{2} / C_{2}H_{2}Br_{4}$	aCamp
	(ii)	ALLC	nge to colourless / decolourised OW any of the following for original colour of bromine red-brown, nge or yellow but not red.	hv. Papacannbridg brown,
				[Total: 10]
3 (a)	(i)		ition of equilibrium moves to the right OW (percentage) yield of product increases / amount of reactant decr	[1]
			OW (percentage) yield of product increases / amount of reactant decr ause reaction is exothermic	reases [1]
	(ii)	prodi More	ition of equilibrium moves to the left (1) ALLOW (percentage) y duct decreases / amount of reactant increases e gas molecules or right hand side / less gas molecules on the le	eft hand
		side	(1)	[2]
(b)	Mol % y	les of ∕ield =	ammonia = 5.88 × 10 ⁶ (1) nitrogen monoxide = 5.33 × 10 ⁶ / mass of NO is 176 tonnes (1) = 90.7 – 90.9 / ALLOW 91 / ALLOW ecf (1) Il three marks for correct % yield with no working out	[3]
(c)	(i)	(care	of titration (1) eful) evaporation / leave to evaporate / put over a boiling water bath (Γ heat over a Bunsen to dryness	(1) [2]
	(ii)	N_2O		[1]
				[Total: 10]
€ (a)			decay of organic matter / methane hydrate / from cows / pig mas / swamps, etc.	anure / [1]
(b)	Sea Pola Clin	a-level ar ice nate c	9 from: el rising / flooding of low lying area / water levels rising (1) e melting / ice caps melting / glaciers melting (1) changes / (some) areas will have (severe) droughts (1) erence to ozone layer	[2]
(c)	Idea	a that	e percentage is increasing (1) t 30 × % of methane is more than % of carbon dioxide / the overall gree methane is greater than that of carbon dioxide (1)	enhouse [2]
(d)	Strı	Jcture	e correct all dots or all crosses	[1]

 CCl_4 / tetrachloromethane (1) ALLOW carbon tetrachloride

[Total: 10]