www.PapaCambridge.com

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS GCE Ordinary Level

MARK SCHEME for the May/June 2011 question paper for the guidance of teachers

5070 CHEMISTRY

5070/21

Paper 2 (Theory), maximum raw mark 75

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

	Do	ao 3	Mark Scheme: Teachers' version	Syllohu
	га	ge 2	GCE O LEVEL – May/June 2011	Syllabus er 5070
A1			t name but formula takes precedence	Syllabus A. A. B. Syllabus Syllabus A. A. B. Syllabus Syl
		V ₂ O ₅ (1) ZnSO ₄ (1	1)	[1]
		AgI (1)	')	[1]
	(d)	CF ₃ C <i>l</i> ₃ (1)	[1]
	(e)	(NH ₄) ₂ SC	O ₄ / ZnSO ₄ (1)	[1]
	(f)	CH ₄ (1)		[1]
	(g)	(NH ₄) ₂ SC	O ₄ (1)	[1] [Total: 7]
				[. 5]
A2	(a)	sulfur did Allow So		[1]
	(b)	copper(II	I) sulfate (1) uSO ₄	[1]
	(c)		$H^- \rightarrow H_2O$ (1) tate symbols	[1]
	(d)		per(II) hydroxide (1) w Cu(OH) ₂	[1]
		Bala	f(aq) + 2OH⁻(aq) → Cu(OH)₂(s) unced equation (1) rect state symbols (1)	[2]
	(e)	Mol ratio	Cu:O = $\frac{79.9}{64}$: $\frac{20.1}{16}$ / 1.25 : 1.26 (1)	[2]

[2]

[Total: 8]

CuO (1)

			2.
Page 3	Mark Scheme: Teachers' version	Syllabus	er
	GCE O LEVEL – May/June 2011	5070	100

- A3 (a) (i) same number of electrons / same number of protons / same electrons arrangement of electrons / both have 92 electrons / both have 92 protons (1)
 - (ii) different number of neutrons / uranium-238 has three more neutrons (1)

(b) (i)
$$UO_2 + 4HF \rightarrow UF_4 + 2H_2O(1)$$
 [1]

(ii)
$$UF_4 + 2Mg \rightarrow U + 2MgF_2$$
 (1) [1]

- (iii) reaction involving gain of electrons / reaction involving decrease in oxidation number (1)

 Allow a reaction involving the loss of oxygen / gain of hydrogen [1]
- (iv) M_r of $UO_2 = 270$ (1) Moles of $UO_2 = 3704$ (1) **Allow** ecf from wrong M_r Mass of uranium = 0.881 tonnes (1) **Allow** ecf from wrong moles Correct answer scores **all three** marks

OR

Alternative approach using percentage composition M_r of $UO_2 = 270$ (1) % of U = 88.1% (1) **Allow** ecf from wrong M_r Mass of uranium = 0.881 tonnes (1) **Allow** ecf from wrong percentage [3]

(c) between magnesium and copper (1) [1]

[Total: 9]

	Pa	ge 4	Mark Scheme: Teachers' version	Syllabus
	ı a	ge T	GCE O LEVEL – May/June 2011	5070 V
A 4	(a)	Rest of s	ent bond pairs shown (1) structure correct (1) nner shell electrons of oxygen	Syllabus Part of Brandhia
	(b)	Particles	a comparison in both marking points in a gas are moving faster than particles in a liquid (1) in a gas are further apart than those in a liquid (1)	
	(c)	unit volu So more	s in pure hydrogen peroxide are more crowded / close me / particles are more concentrated (1) c collisions per second / increased collision frequency of collision / collisions more likely (1)	
	(d)	Allo	$F ightarrow Fe^{3+} + e^{-}(1)$ Fow $Fe^{2+} - e^{-} ightarrow Fe^{3+}$ Fow e instead of e^{-}	[1]
		(ii) Add	sodium hydroxide (solution) / (aqueous) Ammonia	a / add (aqueous) hydroxide
		ions Sho	uld be a brown-rust ppt (1)	[2]
	(e)	•	change of KMnO $_4$ shows) it is a reducing agent / it can change of KI shows) it is an oxidising agent / it can be i	` ,
				[Total: 11]
\ 5	(a)	78–79 %	s (1)	[1]
	(b)		al distillation (1) air / liquefy air (1)	
		•	the components of air have) different boiling points (1) [3]
	(c)	Photosy	t carbon cycle involves photosynthesis and respiration nthesis decreases carbon dioxide and increases ox dioxide into oxygen (1)	• •
		Respirat	ion increases carbon dioxide and decreases oxygen (1	•
			tion increases carbon dioxide and decreases oxygen (*osition (of living things) increases carbon dioxide (1)	1) [4]
	(d)		flue-gas desulfurisation / removal of sulfur dioxide from	
			absorbs the sulfur dioxide / neutralises (acidic) sulfur d	lioxide (1)

Added to lakes to neutralise acidic water (1)

[Total: 10]

[2]

Page 5	Mark Scheme: Teachers' version	Syllabus	er
	GCE O LEVEL – May/June 2011	5070	100
			A 400

- Calcium nitrate solution contains ions / AW (1)
 Pentane only contains molecules / pentane is a covalent compound / pentane ontains ions (1) **B6** (a) Calcium nitrate solution contains ions / AW (1)
 - (b) Sodium and chlorine (1) [1] **Allow** Na and Cl_2
 - (c) Hydrogen, chlorine (and sodium hydroxide) (1) **Allow** H_2 , Cl_2 (and NaOH) [1]
 - (d) Electrolyte is aluminium oxide (dissolved in cryolite) / alumina (1) Graphite electrodes / Carbon electrodes (1) [2]
 - (e) (i) Gets plated with copper (1) $Cu^{2+} + 2e^{-} \rightarrow Cu (1)$ [2]
 - (ii) 1.21 (g) [1]
 - (iii) 1.75 (g) [1]
 - [Total: 10]
- **B7** (a) Propanol / propan-1-ol / propan-2-ol (1) [1]
 - (b) CH₃CH₂CH₂CH₂OH / CH₃CH₂CHOHCH₃ (1) Only contains (C—C) single bonds (1) Allow there are no (carbon-carbon) double bonds [2]
 - (c) $C_7H_{16}O(1)$ Allow C₇H₁₅OH [1]
 - (d) (i) $CH_3COOC_2H_5$ (1) [1]
 - (ii) Solvent (1) Allow flavouring / perfume [1]
 - (e) $C_6H_{12}O_6 \rightarrow 2C_2H_5OH + 2CO_2$ (1) Use of yeast (1) Any temperature or range of temperature within 20-40 °C / absence of oxygen / anaerobic conditions / presence of water / Fractional distillation (to separate ethanol) (1)
 - (f) Ethene / C₂H₄ (1) [1]

Ignore incorrect reactants this has been assessed by the equation

[Total: 10]

[3]

										-		my		
Page 6)	Mark Scheme: Teachers' version Syllab GCE O LEVEL – May/June 2011 5070						bus 0	· Ago	er		
В8	(a)	age 6 Mark Scheme: Teachers' version GCE O LEVEL – May/June 2011 (i) Position of equilibrium moves to the right (1) Allow make more CH ₃ COOH Because the reaction is exothermic / to release energy (1) This mark is dependent the position of equilibrium moves to the right (ii) Reaction is faster / activation energy is very high (1)									dan lidge			
	(b) Labelled products to the right and below reactants (1) Correct labelled activation energy for the forward reaction (1) Allow double headed arrow head / arrow without any heads Not arrow in wrong direction Correct labelled enthalpy change (1) Not arrow in wrong direction / double headed arrow Note – arrows do not have to start exactly at reactant level and finish maximum of curve Maximum of two marks for an error carried forward for a reaction i.e. enthalpy change mark and activation energy													
	(c)	Lowers the activation energy (1) Allow more effective collisions / more successful collisions									[1]			
	(d)	 Maximum moles that can be made is 10 / limiting reactant is the carbon monoxid 98% (1) CH₃CO₂NH₄ (1) 							ide (1)	[2]				
	(e)								[To	[1] otal: 10]				
В9	(a)) Only partially dissociates / does not completely ionise (1)							[1]					
	(b)	Use universal indicator (1) Idea that the different colours indicate different pH values / match colour again chart (1) Allow this mark even for an incorrect indicator							gainst a	a colour [2]				
	(c)	Moles of sulfamic acid = $\frac{0.105}{97}$ / 0.00107 (1) Moles of KOH = $\frac{10.8}{1000}$ × 0.100 / 0.00108 (1)							ro1					
				s with one	·									[3]
	(d)	(i) (ii)	•	+ 2SO ₃ N CO ₃ + 2S			·	. ,		O _c (1)				[1]
		(ii)	Forn	ns carbon w carbon	dioxide	/ bubbl	es (1)			○ 2 (1)				[2]
	(e)	Nitr	ogen	(1)									[To	[1] otal: 10]