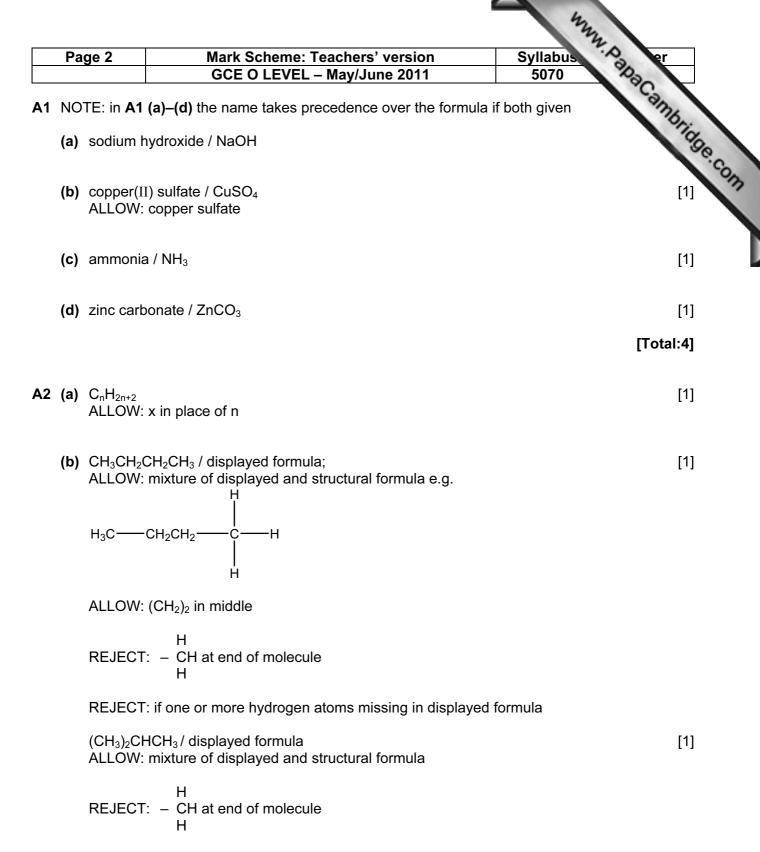
UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS **GCE Ordinary Level** 

# www.papacambridge.com MARK SCHEME for the May/June 2011 question paper

### for the guidance of teachers

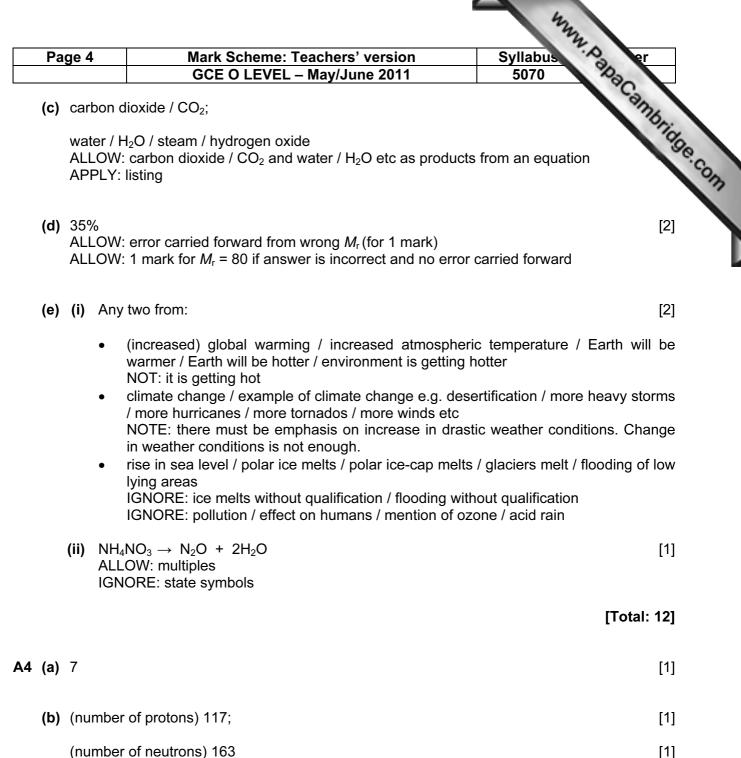
## **5070 CHEMISTRY**

5070/22


Paper 2 (Theory), maximum raw mark 75

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.


Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

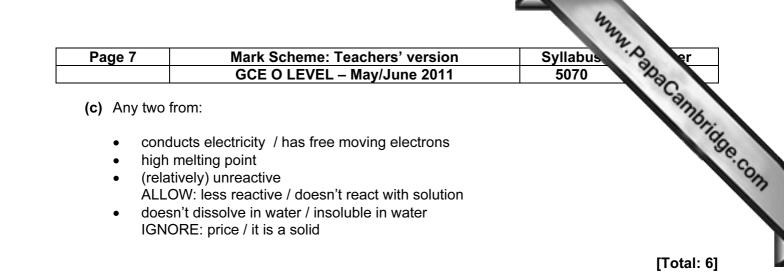


REJECT: if one or more hydrogen atoms missing in displayed formula

| Pa  | ige 3       | 3 Mark Scheme: Teachers' version<br>GCE O LEVEL – May/June 2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Syllabus of er<br>5070               |
|-----|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|
| (c) | (i)         | substitution<br>ALLOW: if qualifying adjective to substitution e.g.<br>nucleophilic substitution/ chlorine substitution<br>IGNORE: chlorination / halogenation<br>APPLY: listing e.g. substitution + addition = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Syllabus<br>5070<br>BBC annibrio     |
|     | (ii)        | Any correct structure of a chloro substituted butane e.g.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | [1]                                  |
|     |             | $CH_3CH_2CH_2Cl_2Cl_1$ / $CH_3CH_2CHCl_2CH_3$ /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |
|     |             | CH <sub>3</sub> CH <sub>2</sub> CHC <i>l</i> CH <sub>2</sub> C <i>l</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                      |
|     |             | ALLOW: displayed formula /mixture of displayed and strue<br>APPLY same rules as in <b>(b)</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ctural formula                       |
| (d) | ALL         | ctional distillation<br>LOW: fractionation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | [1]                                  |
|     | APr         | PLY: listing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | [Total:6]                            |
| (a) | (i)         | contains carbon-carbon double bonds;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | [1]                                  |
|     |             | contains many / more than one (double bond);<br>NOTE: 2 <sup>nd</sup> mark dependent on double bonds being stated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | [1]                                  |
|     |             | REJECT: ideas of monomers e.g. chains of many monor<br>bonds<br>REJECT: ideas of polymers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                      |
|     | (ii)        | add aqueous bromine / add bromine water;<br>ALLOW: add bromine / bromine liquid / bromine gas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | [1]                                  |
|     |             | with saturated hydrocarbon, bromine stays orange but un saturated hydrocarbon bromine does not change colour b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                      |
|     |             | ALLOW: red-brown / brown / yellow for colour of bromine IGNORE: unsaturated becomes clear / unsaturated becomes cl |                                      |
|     |             | ALLOW: (acidified) potassium mangante(VII) / potassium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ı permanganate (1 mark)              |
|     |             | with saturated hydrocarbon, potassium permangana<br>unsaturated decolourised / with saturated hydrocarbon po<br>not change colour but unsaturated decolourised (1 mark)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | otassium permanganate does           |
|     |             | NOTE: it must be made clear which is the test for satural unsaturated compound                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ted and which is the test for the    |
| (b) | mixt<br>APF | drogenation / reaction with hydrogen / reaction with H <sub>2</sub> /<br>xture / adding hydrogen<br>PLY: listing e.g. adding hydrogen and oxygen = 0<br>NORE: conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | bubbling hydrogen through the<br>[1] |



ALLOW: error carried forward from number of protons i.e. 280 – number of protons)


| Page 5                                                         | Mark Scheme: Teachers' version                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Syllabus Syllabus                                   | er                   |
|----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|----------------------|
|                                                                | GCE O LEVEL – May/June 2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5070                                                |                      |
| <b>c)</b> Any 2                                                | of:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                     | amb                  |
| nc<br>sc<br>ha<br>th<br>th<br>bla<br>Al<br>IG<br>• in:<br>• ra | bor electrical conductor / does not conduct electricity / p<br>of conduct heat<br>blid / crystalline<br>as (relatively) low melting point / (relatively) low boiling p<br>e Group / highest boiling point of the Group / higher n<br>an iodine<br>OT: higher melting point / boiling point alone<br>ack / grey / dark (no other colours e.g. dark brown)<br>LLOW: darker than iodine / astatine<br>SNORE: darker (without iodine/ astatine)<br>soluble in water / soluble in organic solvents<br>idioactive<br>SNORE: low density / dull surface / soft / hazardous / pois | point / highest melting<br>melting point (or boilin | point of<br>g point) |
|                                                                | $g + F_2 \rightarrow MgF_2$<br>GNORE: state symbols                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                     | [1]                  |
| • •                                                            | is 2,8 ;<br>only 1 F <sup>-</sup> need be shown)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                     | [1]                  |
| Μ                                                              | lg <sup>2+</sup> is 2,8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                     | [1]                  |
| AI<br>AI<br>AI                                                 | LLOW: information from diagram<br>LLOW: 1 mark for Mg <sup>2+</sup> and F <sup>-</sup> (correct charges)<br>LLOW: 1 mark for correct electronic structure for both ion<br>LLOW: Fl <sup>-</sup> for F <sup>-</sup><br>: charge in nucleus in two otherwise correct diagrams = 2                                                                                                                                                                                                                                                                                            |                                                     |                      |

| Page 6             |                          | Mark Scheme: Teachers' version                                                                                                                                                                                                           | Syllabus er                            |
|--------------------|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
|                    |                          | GCE O LEVEL – May/June 2011                                                                                                                                                                                                              | 5070 23                                |
| (e) (i)            |                          | red pair of electrons between carbon and each of the<br>OW: all dots / all crosses                                                                                                                                                       | e 4 halogen atoms;                     |
|                    | IGN<br>IGN               | of structure correct<br>ORE: inner shells of electrons<br>ORE: type of halogen atoms e.g. CC <i>l</i> <sub>4</sub> / CF <sub>4</sub><br>IECT: incorrect arrangement of atoms e.g. CF <sub>3</sub>                                        | Syllabus<br>5070<br>e 4 halogen atoms; |
| (ii)               | Any                      | one of:                                                                                                                                                                                                                                  | [                                      |
|                    | •                        | poor conductor of heat / does not conduct heat<br>has low melting point / has low boiling point / it is a<br>allow: it is a liquid<br>low density<br>insoluble in water / soluble in organic solvents<br>IGNORE: covalent / forms dimers | gas                                    |
| (iii)              | con\<br>ALL              | ne depletion / destroys ozone layer / damages ozone<br>verts ozone to oxygen<br>OW: global warming / any of the results of global wa<br>IECT: acid rain                                                                                  | ]                                      |
|                    |                          |                                                                                                                                                                                                                                          | [Total: 12                             |
|                    |                          | trong) covalent bonds<br>E: has a giant molecular structure                                                                                                                                                                              | [                                      |
| terr<br>ALI<br>nee | nperat<br>LOW:<br>eded t | lot of energy to break bonds / needs a lot of he<br>ture to break bonds<br>hard to break the bonds / large amount of energy to<br>to break strong forces between atoms                                                                   | Ĩ                                      |

NOT: (just) lot of energy needed to break strong forces

REJECT: references to intermolecular or ionic forces = 0 for the question

- (b) (i) no free electrons / no mobile electrons / electrons not free to move / <u>all</u> outer electrons fixed in position / no delocalised electrons / <u>all</u> electrons involved in covalent bonding / no sea of electrons [1]
   ALLOW: the four electrons needed to form a covalent bond IGNORE: no ions to move
  - (ii) (some) electrons free to move / it has delocalised electrons / blue diamond has delocalised electrons (some of the) electrons are delocalised / (some) free electrons / sea of electrons [1]
     IGNORE: boron is metallic / boron is a metalloid / boron has sea of electrons / boron has delocalised electrons



- A6 (a) Nylon / Kevlar / Trogamid / Kermal / Nomex / Twaron / Technon / Teijinconex / Rilson / Ultramid [1]
  - (b) Marks can be obtained from written material or diagram

spot of mixture on (filter) paper above solvent level and paper dipping into solvent [1] ALLOW: liquid (for solvent)

from diagram: paper dipping into a solvent (which needn't be labelled) and spot shown on either (i) just above solvent or (ii) further up the paper with base line shown or (iii) on base line and further up

NOTE: base line and /or spot must be above solvent level ALLOW: liquid (for solvent)

spray with locating agent / use locating agent / spray with ninhydrin / use ninhydrin; [1] ALLOW; spray with colouring agent

NOTE: the locating agent mark must be in context of the paper after running the amino acids not at another stage e.g. adding it to the solvent

The next 2 marks can be accessed in two ways:

#### EITHER

First way:

measure  $R_f$  value(s) / use  $R_f$  values / description of how to measure  $R_f$  e.g.

 $R_{\rm f}$  = <u>distance moved by spot (from base line)</u>

distance moved by solvent front (from base line)

compare against standard  $R_{\rm f}$  values / compare with known  $R_{\rm f}$  values/ compare with  $R_{\rm f}$  values in book [1]

#### OR

Second way: run known and unknown amino acid on the same piece of paper [1] ALLOW: from diagram with labels of known and unknown

compare unknown (amino acid) with distance travelled by known (amino acids) on same piece of paper

ALLOW: from diagram showing spots of known and unknown run the same distance with some labelling explanation in words e.g. same (distance) / run equal distance [1]

[Total:5]

[1]

| Page 8 |                                                     | Mark Scheme: Teachers' versionSyllabusGCE O LEVEL – May/June 20115070                                                                                                                                                                                                                                                                                                                                                                                                   | r            |
|--------|-----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| 7 (a)  | ALLOW:<br>reactants<br>products<br>IGNORE<br>IGNORE | Mark Scheme: Teachers' version<br>GCE O LEVEL – May/June 2011Syllabus<br>5070absorbs energy / reaction absorbs heat / it absorbs energy / it absorbs heat<br>temperature of surroundings decreases / energy of products greater than energy<br>released / it goes cold / bond energy<br>is less than bond energy of reactants<br>energy needed to break the bonds (alone) / $\Delta H$ is positive<br>energy needed (on its own)<br>energy needed to start the reaction | hbilds       |
| (b)    | •                                                   | to the right and above reactants;<br>NO / nitrogen oxide as product                                                                                                                                                                                                                                                                                                                                                                                                     | [1]          |
|        | IGNORE<br>NOT: arr                                  | ward reaction correctly labelled;<br>:: double-headed arrow / arrow without any heads /<br>row pointing downwards<br>nrow does not have to start exactly at reactant line and finish exactly at maximu                                                                                                                                                                                                                                                                  | [1]<br>ım of |
|        | ALLOW:                                              | led correctly with arrow pointing upwards (for endothermic reaction);<br>+ 66 (kJ mol <sup>-1</sup> ) in place of $\Delta H$<br>H2 – H1 with H2 and H1 shown on vertical axis of diagram                                                                                                                                                                                                                                                                                | [1]          |
|        | level                                               | arrow does not have to start exactly at reactant level and finish exactly at pro<br>rows with double heads / arrow pointing downwards                                                                                                                                                                                                                                                                                                                                   | oduct        |
|        |                                                     | Max 2 marks for error carried forward from a reaction that is exothermic and on right as long as the arrows for $E_a$ and $\Delta H$ are appropriate                                                                                                                                                                                                                                                                                                                    | has          |
| (c)    | moles N <sub>2</sub>                                | $r_2 = \frac{100}{28}$ or 3.57 / 3.6 ;                                                                                                                                                                                                                                                                                                                                                                                                                                  | [1]          |
|        | ALLOW:                                              | tric oxide = 7.14 / indication of 2 x moles of $N_2$<br>error carried forward from incorrect moles $N_2$<br>:: 2 x mass in grams                                                                                                                                                                                                                                                                                                                                        | [1]          |
|        | ALLOW:<br>Candida                                   | nitric oxide = (7.14 x 30) = 214 g<br>214.2 g / 214.3 / 214.28 / 214.29 g / answer to the number of significant figure<br>te uses (minimum 2 SF's)<br>error carried forward from incorrect moles of nitric oxide                                                                                                                                                                                                                                                        | [1]<br>s the |
|        | IF: first r                                         | answer to two significant figures e.g. 210<br>narking point has been reduced to 2 significant figures i.e. 3.6 (1 mark) This g<br>ie second marking point (1 mark ) and an answer of 216 (3 <sup>rd</sup> mark)                                                                                                                                                                                                                                                         | gives        |
|        |                                                     | gives 60 g nitric oxide (1 mark)<br>gives (100 x 60/28 g) nitric oxide = 214 g (1 mark)                                                                                                                                                                                                                                                                                                                                                                                 |              |
|        | mass of                                             | nitric oxide = (7.14 x 30) = 214 g                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |
|        |                                                     | perrect answer without working assres 2 marks]                                                                                                                                                                                                                                                                                                                                                                                                                          |              |

-

[NOTE: correct answer without working scores 3 marks]

| Page 9              | Mark Scheme: Teachers' version                                                                                                                                                                                       | Syllabus P. er      |
|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
|                     | GCE O LEVEL – May/June 2011                                                                                                                                                                                          | 5070 23             |
| (d) rate incr       | eases / speed increases;                                                                                                                                                                                             | Cannbr.             |
| particles<br>IGNORE | rticles in given volume / more particles in same vo<br>more crowded / particles closer together / more cond<br>: more collisions unqualified / more particles in a give<br>molecules / atoms / species for particles | centrated particles |

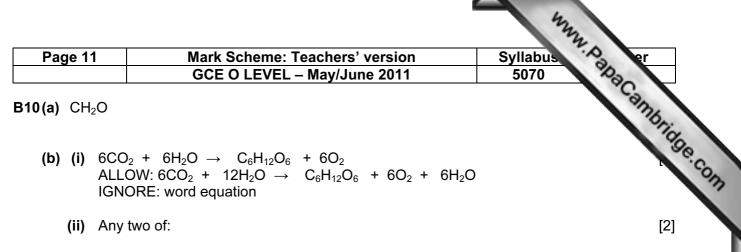
more collisions per second / collision frequency increases/ increases collision rate / higher chance of collisions / collide more often / higher probability of collisions; [1] IGNORE: more effective collisions / more energetic collisions unqualified / quicker collisions IGNORE: equilibrium statements

[Total: 10]

| B8 | (a) | H⁺/  | ′ H₃O⁺                                                                                                                                                                | [1]                 |
|----|-----|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
|    | (b) | (i)  | carbon dioxide / CO <sub>2</sub>                                                                                                                                      | [1]                 |
|    |     | (ii) | $Mg(C_2H_5CO_2)_2 / (C_2H_5CO_2)_2Mg / Mg(C_2H_5COO)_2 / (C_2H_5COO)_2Mg$                                                                                             | [1]                 |
|    | (c) | (i)  | moles hydrogen = <u>60</u> or 0.0025 ;<br>24000                                                                                                                       | [1]                 |
|    |     |      | moles magnesium = 0.0025 ;<br>ALLOW: error carried forward from moles of hydrogen                                                                                     | [1]                 |
|    |     |      | mass magnesium (= $0.0025 \times 24$ ) = $0.06 \text{ g}$<br>ALLOW: error carried forward from moles of magnesium / error carried<br>using 22 400 as molar gas volume | [1]<br>forward from |
|    |     |      | [correct answer without working = 3 marks)                                                                                                                            |                     |
|    |     | (ii) | same volume at the end of the experiment ;<br>same general shape but initial gradient less and levels out after 120 s                                                 | [1]<br>[1]          |
|    | (d) |      | $f(aq) + C\Gamma(aq) \rightarrow AgCl(s)$<br>rect balanced equation ;                                                                                                 | [1]                 |
|    |     | cor  | rect state symbols (dependent on the correct species)                                                                                                                 | [1]                 |
|    |     |      |                                                                                                                                                                       | [Total: 10]         |

| Pa    | ge 10     | Mark Scheme: Teachers' version                                                                                                                                                                                       | Syllabus                                      | er er                 |
|-------|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|-----------------------|
|       |           | GCE O LEVEL – May/June 2011                                                                                                                                                                                          | 5070                                          | Da                    |
| ) (a) |           | sely packed positive ions regularly arranged;<br>JECT: closely packed atoms                                                                                                                                          |                                               | DapaCambridg          |
|       |           | of electrons / delocalised electrons / free electrons; TE: electrons can be shown in diagram as $e^-$ / e or -                                                                                                       | <ul> <li>or dots labelled electrol</li> </ul> | n N                   |
|       | IGN<br>NO | action between electrons and positive ions<br>IORE: attraction between electrons and protons<br>TE: marks can be obtained from either written desc<br>iny contradictory statements                                   |                                               | [1]                   |
| (b)   | (i)       | electrons can move / has delocalised electrons / ele<br>/ has mobile electrons                                                                                                                                       | ectrons are free / has sea                    | a of electrons<br>[1] |
|       | (ii)      | impure copper anode and pure copper cathode;                                                                                                                                                                         |                                               | [1]                   |
|       |           | electrolysis of (aqueous) copper(II) sulfate / copper<br>ALLOW: electrolysis of copper sulfate / copper nitra<br>NOT: electrolysis of copper chloride                                                                |                                               | [1]                   |
|       |           | ALLOW: description of electrolysis e.g. cells of<br>electrolyte / pass electric current through solution of<br>ALLOW: relevant information from a diagram<br>IGNORE: copper being deposited at the wrong electrolyte | f copper sulfate                              | s dipping in          |

(c) brass / bronze / gilding metal / Muntz metal / yellow metal / bell metal / cupro-nickel / gunmetal / speculum metal / (cupro) nickel-silver / duralumin [1] ALLOW: smart alloy / gold alloy IGNORE: steel alloys


#### (d) Any three of:

- copper ores are in limited supply / are becoming worked out / are finite (resource) / saves resources / less copper extracted from the soil IGNORE: no waste of copper
- less energy used (in recycling than in extracting from the ore)
- reduces pollution / reduces waste / reduces trash / less eyesore / not an eyesore / less landfill / no landfill IGNORE: does not cause pollution
- (need to) sort out recycled metals / (need to) collect scrap / collecting scrap (costs money) / collecting scrap requires energy
- need to purify the recycled copper
- (less mining) saves more land for other uses / (less mining) saves land for more agriculture

IGNORE: costs / time consuming

[Total: 10]

[3]



- needs <u>sun</u>light (NOT: light alone)
- needs chlorophyll
- needs enzyme(s)
- temperature values quoted from 20 and 40 °C (if range given, both values should be within the range)
   ALLOW: 'body' temperature
   IGNORE: temperature more than a specified temperature / temperature less than a specified temperature / room temperature

APPLY: listing but ignore  $CO_2$  and  $H_2O$  in listing

- (c) (i) Any two of:
  - temperature values quoted from 20 and 40 °C (if range given, both values should be within the range)
     ALLOW: 'body' temperature
     IGNORE: temperature more than a specified temperature / temperature less than a specified temperature / room temperature

[2]

- water / moisture / damp IGNORE: humid
- needs yeast / enzymes / zymase
- pH 7 / pH near 7 / neutral
- absence of oxygen / anaerobic IGNORE: minerals / salts APPLY: listing

| Page 12                  | Mark Scheme: Teachers' version                                                                                                                                                                                                                                                                            | Syllabus of er                                   |
|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|
|                          | GCE O LEVEL – May/June 2011                                                                                                                                                                                                                                                                               | 5070 23                                          |
|                          | Method 1:<br>noles of glucose = <u>1000000</u> / 5 556 / 5 555.5 ;<br>180                                                                                                                                                                                                                                 | Syllabus<br>5070<br>er<br>5070<br>I<br>1<br>5070 |
|                          | noles ethanol = 2 x moles glucose / 11 111 / 11 112 ;<br>ALLOW: error carried forward from wrong moles of glucos                                                                                                                                                                                          | [1]                                              |
| to<br>A<br>A             | nass of ethanol = (46 x moles ethanol) = 511 106 g / 511<br>o 0.511 152 tonnes<br>ALLOW: 0.51(1) tonnes / 511 000 g / 510 000 g<br>ALLOW: error carried forward from incorrect moles of etha<br>correct answer without working = 3 marks]                                                                 | [1]                                              |
| A<br>I<br>a<br>N         | ALLOW: 0.5 as final answer depending on working being of<br>F: no other marks scored allow correct molar masses of<br>and 46<br>NOTE: if working is in tonnes but answer incorrect candio<br>and a mark for 2 x moles glucose                                                                             | of glucose and ethanol i.e. 180                  |
|                          | ALLOW: credit for answers derived from particular part e.g. $5.5 \times 10^3 \times 2 = 1 \times 10^4$ gets the first 2 marks.                                                                                                                                                                            | rounded to 1 significant figure                  |
| 1<br>ii<br><i>F</i><br>1 | Alternative: Method 2<br>180 g glucose $\rightarrow$ 46 g ethanol (1 mark)<br>ndication of correct molar ratio e.g. 2 x 46 / 92 (1 mark<br>ALLOW: error carried forward<br>1 000 000 g glucose $\rightarrow$ 1 000 000 x 92/ 180 = 511 111 g<br>ALLOW: error carried forward from incorrect moles of etha | (1 mark)                                         |
| (iii) p                  | produces a greenhouse gas / carbon dioxide is a green                                                                                                                                                                                                                                                     |                                                  |

(III) produces a greenhouse gas / carbon dioxide is a greenhouse gas / need to separate ethanol from fermentation mixture (or words to that effect) [1]
 ALLOW: fermentation is a slow process
 IGNORE: fermentation is a long process / takes a long time
 ALLOW: fewer food crops / fewer plants grown for food / food crop used for biofuels instead of food
 IGNORE: global warming / carbon dioxide given off / high activation energy

[Total:10]