CAMBRIDGE INTERNATIONAL EXAMINATIONS GCE Ordinary Level

www.papacanbridge.com MARK SCHEME for the October/November 2012 series

5070 CHEMISTRY

5070/21

Paper 2 (Theory), maximum raw mark 75

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2012 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	
	GCE O LEVEL – October/November 2012	5070	
l (a) (substa to any c	nce containing) only one type of atom / substance wh other substance	nich cannot be broken	norio
(b) (i) gal	lium/Ga		[1]
(ii) arg	on/Ar		[1]
(iii) bro	mine/Br/Br ₂		[1]
(iv) hyd	Irogen/H/H ₂		[1]
(v) ma	gnesium/Mg		[1]
(vi) arg	on/Ar		[1]
(c) 2,8,3			[1]
		[Tota	al: 8]
2 (a) oxygen	′air <u>and</u> water		
ALLOW	/ moist air/damp oxygen		[1]
(b) magnes	sium is more reactive than iron (1)		
magnes	sium loses electrons rather than iron/magnesium corr	odes instead of iron (1)	[2
(c) mixture	of metals / mixture of metal and non metal		[1]
(d) the high	her the pH the less the corrosion/the lower the pH the	higher the corrosion (1)	
betwee	n pH 5 and 8 there is no difference in corrosion rate (1)	
Note: a alkaline	nswer must make specific reference to pH rather that	n acid, acidic, alkali or	[2]

[Total: 7]

Page 6	Mark Scheme	Svilabus 72.0	
	GCE O LEVEL – October/November 2012	5070 %	
6 (a) S(<i>l</i>)	+ $O_2(g) \rightarrow SO_2(g)$	Canne	Tic
(b) (i)	vanadium(V) oxide/vanadium pentoxide		30e.co
(ii)	more molecules on the left/more moles of gas on the	left/less volume on the right	[1]
(iii)	any one from		
	equilibrium already well to the right (1)		
	high yield of sulfur trioxide without increasing pressure	e (1)	
	increase in pressure would be expensive (for margina	ll increased yield) (1)	
	greater corrosion of converter vessel at higher pressu	re (1)	[1]
(iv)	reaction exothermic (1)		
	higher temperatures would shift reaction in favour of t	he reactants (1)	
	at lower temperatures rate of reaction is slower (1)		[3]
(a) Ц S	0 + H 0 > 2H SO		[1]

(d) moles NaOH = $0.1 \times \frac{28}{1000} = 2.8 \times 10^{-3} \text{ mol (1)}$

moles $H_2SO_4 = \frac{1}{2}$ value of that in first stage (1.4 × 10⁻³ mol)/correct use of the mole ratio (1)

concentration of H_2SO_4 = (1.4 × 10⁻³ × $\frac{1000}{9.5}$) = 0.147 (mol/dm³) (1)

(mark is for correct answer)

[3]

[Total: 11]

Page	7	Mark Scheme	Syllabus r
		GCE O LEVEL – October/November 2012	5070 2030
7 (a) po	ositive	ions close to each other in a regular arrangement (1) amb
el	ectron	s between the positive ions randomly arranged (1)	10
(b) (i	elec	ctrons are delocalised/electrons free to move (1)	
(ii	laye	ers slide over each other (when a force is applied) (1) [2]
(c) (i) Sn ·	+ $H_2O \Rightarrow SnO + H_2$	
	the	equilibrium sign must be present to gain the mark	[1]
(ii) oxic	le which reacts with acids as bases	[1]
(d) (i) Sn ·	+ $4HNO_3 \rightarrow SnO_2$ + $4NO_2$ + $2H_2O$	[1]
(ii	add	(concentrated aqueous) sodium hydroxide and alun	ninium foil (1)
	ALL	-OW add sodium hydroxide and Devarda's alloy	
	war	m and test gas with red litmus paper (1)	
	(red	l) litmus turns blue/ammonia produced (1)	
	ALL	_OW the brown-ring test	[3]
			[Total: 10]

Pa	ige 8	Mark Scheme Syllabus	Y.
		GCE O LEVEL – October/November 2012 5070	2
8 (a)	any	three from	amp
	idea	a that fractions separate because they have different boiling points (1)	119
	terr	perature higher at bottom of column than at top (1)	
	mo one	ecules move up column so heavier ones at the bottom/lighter ones at top / larger s at bottom/smaller ones at top (1)	
	larg poii	er molecules have higher boiling points / smaller molecules have lower boiling nts (1)	
	mo	ecules condense when temperature in column falls below boiling point (1)	[3]
(b)	(i)	any two from	
		group of similar organic compounds with	
		same functional group (1)	
		same general formula (1)	
		ALLOW each member varies by a CH ₂ group	
		similar chemical properties (1)	
		ALLOW same chemical properties	
		trend in physical properties (1)	[2]
	(ii)	correct displayed formula for butane (1)	
		correct displayed formula for methylpropane (1)	
		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
		DO NOT ALLOW condensed structural formulae	[2]
(c)	C₀⊦	$H_{14} + 91/_2O_2 \rightarrow 6CO_2 + 7H_2O_2$	
	ΔΙ	OW correct multiples of this equation	[1]

	ge n	J Mark Scheme	Syllabus
		GCE O LEVEL – October/November 2012	5070 23
10(a)	any	three from	Physics
	to r	emove impurities in the ore as slag (1)	10
	cal	Sium carbonate decomposes to calcium oxide/CaCO $_3 \rightarrow C$	CaO + CO ₂ (1)
	calo	sium oxide reacts with silicon dioxide/CaO + SiO ₂ \rightarrow CaSiC	O ₃ (1)
	slaę	ງ is calcium silicate/slag is CaSiO₃(1)	[3]
(b)	(i)	barium carbonate	[1]
	(ii)	the more reactive the metal the more stable the carbonat	e [1]
(c)	(i)	suitable apparatus e.g. gas syringe/upturned measuring	cylinder (1)
		closed system – essentially does the method work (1)	[2]
	(ii)	increasing pressure decreases the volume <u>and</u> increasin the volume (1)	g temperature increases
		(increasing pressure) pushes molecules closer together s of container (1)	so more collisions with walls
		(increasing temperature) makes molecules move faster/n energy (1)	nolecules have more [3]