

# **Cambridge O Level**

#### CHEMISTRY

5070/22 May/June 2024

Paper 2 Theory MARK SCHEME Maximum Mark: 80

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the May/June 2024 series for most Cambridge IGCSE, Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

# **Generic Marking Principles**

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptions for a question. Each guestion paper and mark scheme will also comply with these marking principles.

**GENERIC MARKING PRINCIPLE 1:** 

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question .
- the specific skills defined in the mark scheme or in the generic level descriptors for the question .
- the standard of response required by a candidate as exemplified by the standardisation scripts.

**GENERIC MARKING PRINCIPLE 2:** 

Marks awarded are always whole marks (not half marks, or other fractions).

**GENERIC MARKING PRINCIPLE 3:** 

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond ٠ the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do ٠
- marks are not deducted for errors .
- marks are not deducted for omissions .
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the ٠ question as indicated by the mark scheme. The meaning, however, should be unambiguous.

**GENERIC MARKING PRINCIPLE 4:** 

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

#### **GENERIC MARKING PRINCIPLE 5:**

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

#### **GENERIC MARKING PRINCIPLE 6:**

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

#### Science-Specific Marking Principles

- 1 Examiners should consider the context and scientific use of any keywords when awarding marks. Although keywords may be present, marks should not be awarded if the keywords are used incorrectly.
- 2 The examiner should not choose between contradictory statements given in the same question part, and credit should not be awarded for any correct statement that is contradicted within the same question part. Wrong science that is irrelevant to the question should be ignored.
- 3 Although spellings do not have to be correct, spellings of syllabus terms must allow for clear and unambiguous separation from other syllabus terms with which they may be confused (e.g. ethane / ethene, glucagon / glycogen, refraction / reflection).
- 4 The error carried forward (ecf) principle should be applied, where appropriate. If an incorrect answer is subsequently used in a scientifically correct way, the candidate should be awarded these subsequent marking points. Further guidance will be included in the mark scheme where necessary and any exceptions to this general principle will be noted.

#### 5 <u>'List rule' guidance</u>

For questions that require *n* responses (e.g. State **two** reasons ...):

- The response should be read as continuous prose, even when numbered answer spaces are provided.
- Any response marked *ignore* in the mark scheme should not count towards *n*.
- Incorrect responses should not be awarded credit but will still count towards *n*.
- Read the entire response to check for any responses that contradict those that would otherwise be credited. Credit should **not** be awarded for any responses that are contradicted within the rest of the response. Where two responses contradict one another, this should be treated as a single incorrect response.
- Non-contradictory responses after the first *n* responses may be ignored even if they include incorrect science.

#### 6 <u>Calculation specific guidance</u>

Correct answers to calculations should be given full credit even if there is no working or incorrect working, **unless** the question states 'show your working'.

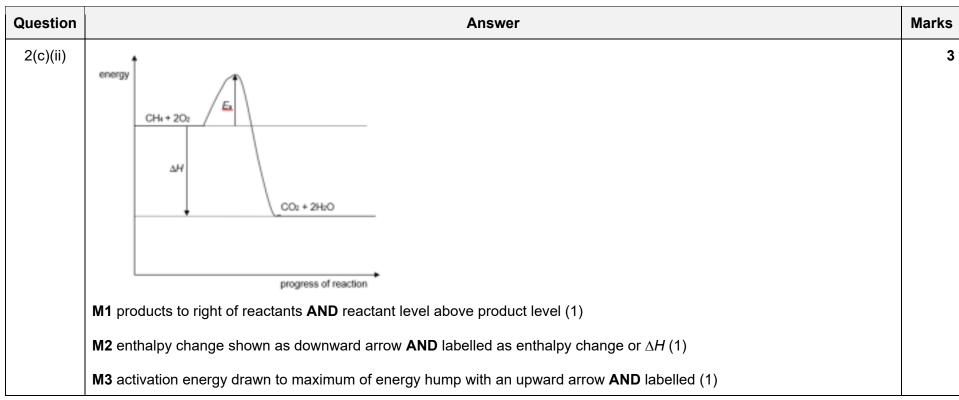
For questions in which the number of significant figures required is not stated, credit should be awarded for correct answers when rounded by the examiner to the number of significant figures given in the mark scheme. This may not apply to measured values.

For answers given in standard form (e.g.  $a \times 10^n$ ) in which the convention of restricting the value of the coefficient (*a*) to a value between 1 and 10 is not followed, credit may still be awarded if the answer can be converted to the answer given in the mark scheme.

Unless a separate mark is given for a unit, a missing or incorrect unit will normally mean that the final calculation mark is not awarded. Exceptions to this general principle will be noted in the mark scheme.

#### 7 <u>Guidance for chemical equations</u>

Multiples / fractions of coefficients used in chemical equations are acceptable unless stated otherwise in the mark scheme.


State symbols given in an equation should be ignored unless asked for in the question or stated otherwise in the mark scheme.

| Question | Answer                       | Marks |
|----------|------------------------------|-------|
| 1(a)     | vanadium(V) oxide            | 1     |
| 1(b)     | carbon monoxide              | 1     |
| 1(c)     | anhydrous copper(II) sulfate | 1     |
| 1(d)     | chlorine                     | 1     |
| 1(e)     | ethanoic acid                | 1     |

| Question  | Answer                                                                               | Marks |  |  |  |
|-----------|--------------------------------------------------------------------------------------|-------|--|--|--|
| 2(a)      | $Al_4C_3$ + 12H <sub>2</sub> O $\rightarrow$ 4Al(OH) <sub>3</sub> + 3CH <sub>4</sub> | 2     |  |  |  |
|           | rmula for aluminium hydroxide as product (1)                                         |       |  |  |  |
|           | balanced equation (1)                                                                |       |  |  |  |
| 2(b)(i)   | contains <b>only</b> carbon and hydrogen                                             | 1     |  |  |  |
| 2(b)(ii)  | contains single bonds only                                                           | 1     |  |  |  |
| 2(b)(iii) | Any two from:                                                                        | 2     |  |  |  |
|           | HC <i>l</i> (1)                                                                      |       |  |  |  |
|           | $CH_{3}Cl(1)$                                                                        |       |  |  |  |
|           | CH <sub>2</sub> C <i>l</i> <sub>2</sub> (1)                                          |       |  |  |  |
|           | CHC <i>l</i> <sub>3</sub> (1)                                                        |       |  |  |  |
|           | CC4 (1)                                                                              |       |  |  |  |

5070/22

| Question | Answer                                                                                                                                      | Marks |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 2(b)(iv) | four carbon-hydrogen bonds shown as shared pairs with no lone pairs on either hydrogen or carbon                                            | 1     |
| 2(c)(i)  | bond breaking endothermic <b>AND</b> bond making exothermic / energy absorbed to break bonds <b>AND</b> energy released on making bonds (1) | 2     |
|          | more energy released than absorbed (1)                                                                                                      |       |



| Question | Answer                                                                                                                                                             | Marks |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 3(a)     | amount of hydrogen peroxide $0.035 \times 0.266$ or $0.00931$ (mol) and amount of oxygen = amount of H <sub>2</sub> O <sub>2</sub> ÷2 <b>OR</b> 0.004655 (mol) (1) | 3     |
|          | volume of oxygen = amount $\times$ 24 <b>OR</b> 0.11172 (dm <sup>3</sup> ) (1)                                                                                     |       |
|          | volume of oxygen = $0.11 (dm^3) (1)$                                                                                                                               |       |
| 3(b)     | rate decreases or reaction is slower because                                                                                                                       | 2     |
|          | particles move slower / particles have less kinetic energy (1)                                                                                                     |       |
|          | less successful collisions / fewer collisions or particles with equal or more than activation energy / less effective collisions / less energetic collisions (1)   |       |
| 3(c)     | rate increases / reaction is faster because                                                                                                                        | 2     |
|          | particles are more crowded / distance between particles is smaller / more particles per unit volume (1)                                                            |       |
|          | more collisions per second / greater collision frequency (1)                                                                                                       |       |
| 3(d)(i)  | H⁺                                                                                                                                                                 | 1     |
| 3(d)(ii) | universal indicator (paper or solution) (1)                                                                                                                        | 2     |
|          | match colour with pH colour chart (1)                                                                                                                              |       |

| Question | Answer                                                                    |   |
|----------|---------------------------------------------------------------------------|---|
| 4(a)     | strong attraction between positive and negative ions                      | 1 |
| 4(b)     | calcium (atom) loses 2 electron (1)                                       | 2 |
|          | bromine (molecule) gains two electrons (1)                                |   |
| 4(c)     | at anode – oxygen (and water) / O <sub>2</sub> (and H <sub>2</sub> O) (1) | 2 |
|          | at cathode – hydrogen / $H_2$ (1)                                         |   |
| 4(d)(i)  | colourless to brown                                                       | 1 |
| 4(d)(ii) | purple to colourless                                                      | 1 |
| 4(e)     | Br⁻ or bromi <b>d</b> e oxidised since it loses electrons (1)             | 2 |
|          | Cl <sub>2</sub> or chlori <b>n</b> e reduced since it gains electrons (1) |   |

| Question | Answer                                                                                                                                                          | Marks |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 5(a)     | (position of equilibrium) moves to the left / (position of equilibrium) moves to the reactant side / (position of equilibrium) moves to zinc carbonate side (1) | 2     |
|          | to release thermal energy (1)                                                                                                                                   |       |
| 5(b)     | (position of equilibrium) moves to the left / (position of equilibrium) moves to the reactant side / (position of equilibrium) moves to zinc carbonate side (1) | 2     |
|          | fewer moles of <b>gas</b> on left hand side / fewer moles of <b>gas</b> on reactant side (1)                                                                    |       |

| Question | Answer                                                                                                                                                                             | Marks |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 5(c)     | <i>M</i> <sub>r</sub> of ZnCO <sub>3</sub> is 125 <b>and</b> of ZnO is 81 <b>OR</b><br><i>M</i> <sub>r</sub> of ZnCO <sub>3</sub> is 65 + 12 + 48 <b>and</b> of ZnO is 65 + 16 (1) | 3     |
|          | amount of ZnCO₃ and ZnO is 0.03384 (mol) <b>OR</b> 4.23÷125(1)                                                                                                                     |       |
|          | mass of zinc oxide is 2.74104 (g) (1)                                                                                                                                              |       |
| 5(d)     | zinc oxide is amphoteric (1)                                                                                                                                                       | 2     |
|          | carbon dioxide is acidic (1)                                                                                                                                                       |       |
| 5(e)     | $ZnCO_3(s) + 2HNO_3(aq) \rightarrow Zn(NO_3)_2(aq) + H_2O(l) + CO_2(g)$                                                                                                            | 2     |
|          | balanced equations (1)                                                                                                                                                             |       |
|          | state symbols dependent on correct formulae (1)                                                                                                                                    |       |

| Question | Answer                                                                                                                                             | Marks |  |  |  |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------|-------|--|--|--|
| 6(a)     | (increased) global warming / (enhanced) greenhouse effect / climate change                                                                         | 1     |  |  |  |
| 6(b)     | ny two from:                                                                                                                                       |       |  |  |  |
|          | flue gas desulfurisation / (reacting sulfur dioxide with) calcium oxide / (reacting sulfur dioxide with) calcium carbonate (1)                     |       |  |  |  |
|          | use low-sulfur fuels (1)                                                                                                                           |       |  |  |  |
|          | burn or use less fossil fuels / do not use fossil fuels / use renewable energy sources / use named renewable energy sources such as solar etc. (1) |       |  |  |  |
| 6(c)(i)  | use of a catalytic converter (1)                                                                                                                   | 2     |  |  |  |
|          | nitrogen monoxide + carbon monoxide $\rightarrow$ carbon dioxide + nitrogen (1)                                                                    |       |  |  |  |

| Question | Answer                   | Marks |
|----------|--------------------------|-------|
| 6(c)(ii) | respiratory problems (1) | 2     |
|          | (photochemical) smog (1) |       |

| Question |                                                             | Answer    |     | Marks |  |  |  |
|----------|-------------------------------------------------------------|-----------|-----|-------|--|--|--|
| 7(a)     | volume increases (1)                                        |           |     |       |  |  |  |
|          | particles spread (out) / distance between particles incre   | eases (1) |     |       |  |  |  |
| 7(b)     | particle separation – move closer together (1)              |           |     |       |  |  |  |
|          | arrangement – random to an ordered (1)                      |           |     |       |  |  |  |
|          | motion – moving from one place to another to vibrating (1)  |           |     |       |  |  |  |
| 7(c)     | particles move from high concentration to low concentration |           |     |       |  |  |  |
| 7(d)     | particle number of particles                                |           |     |       |  |  |  |
|          | electrons                                                   | 18        |     |       |  |  |  |
|          | neutrons <b>17</b>                                          |           |     |       |  |  |  |
|          | protons 16                                                  |           |     |       |  |  |  |
|          |                                                             |           | (3) |       |  |  |  |

| Question | Answer                                                                             | Marks |
|----------|------------------------------------------------------------------------------------|-------|
| 8(a)     | H<br>H<br>H<br>C<br>H<br>H<br>C<br>H                                               | 1     |
| 8(b)     | butyl ethanoate                                                                    | 1     |
| 8(c)(i)  | butanoic acid                                                                      | 1     |
| 8(c)(ii) | $C_4H_8O_2$                                                                        | 1     |
| 8(d)     | sodium butanoate (1)                                                               | 2     |
|          | CH <sub>3</sub> CH <sub>2</sub> COONa (1)                                          |       |
| 8(e)     | $E - CO_2 (1)$                                                                     | 2     |
|          | <b>F</b> – H <sub>2</sub> O (1)                                                    |       |
| 8(f)     | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> COOCH <sub>2</sub> CH <sub>3</sub> | 1     |

| Question                                                                                                                                                                                               |                              | Answer                                      |                          |                        |                        |                  |   |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|---------------------------------------------|--------------------------|------------------------|------------------------|------------------|---|--|
| 9(a)(i)                                                                                                                                                                                                | ester                        | ester                                       |                          |                        |                        |                  | 1 |  |
| 9(a)(ii)                                                                                                                                                                                               | polymer made toge            | polymer made together with a water molecule |                          |                        |                        |                  | 1 |  |
| 9(b)                                                                                                                                                                                                   |                              |                                             |                          |                        |                        |                  |   |  |
|                                                                                                                                                                                                        |                              | element                                     | С                        | F                      | Br                     | _                |   |  |
|                                                                                                                                                                                                        |                              | %                                           | 10.8                     | 17.1                   | 72.1                   |                  |   |  |
|                                                                                                                                                                                                        |                              | amount                                      | 10.8 / 12 <b>OR</b> 0.9  | 17.1/19 <b>OR</b> 0.90 | 72.1/80 <b>OR</b> 0.90 |                  |   |  |
|                                                                                                                                                                                                        |                              | ratio                                       | 1                        | 1                      | 1                      |                  |   |  |
|                                                                                                                                                                                                        | amount row (1)               |                                             |                          |                        |                        |                  |   |  |
|                                                                                                                                                                                                        | ratio (1)                    |                                             |                          |                        |                        |                  |   |  |
|                                                                                                                                                                                                        | CFBr (1)                     |                                             |                          |                        |                        |                  |   |  |
| 9(c)(i)                                                                                                                                                                                                | polymers or plastic          | are unreactive / c                          | lo not dissolve in water |                        |                        |                  | 1 |  |
| 9(c)(ii)                                                                                                                                                                                               | Any two marking p            | points from:                                |                          |                        |                        |                  | 2 |  |
|                                                                                                                                                                                                        | (incomplete) combu           | ustion produces c                           | arbon monoxide (1)       |                        |                        |                  |   |  |
|                                                                                                                                                                                                        | burning produces a           | toxic gas / incine                          | ration produces a poisor | nous gas (1)           |                        |                  |   |  |
|                                                                                                                                                                                                        | combustion produce           | es carbon dioxide                           | e (1)                    |                        |                        |                  |   |  |
| burning produces a greenhouse gas / burning (produces a gas that) causes a greenhouse effect / burning (produce<br>that) causes climate change / burning (produces gas that) causes global warming (1) |                              |                                             |                          |                        |                        | ng (produces gas |   |  |
|                                                                                                                                                                                                        | (more) land-fills needed (1) |                                             |                          |                        |                        |                  |   |  |
|                                                                                                                                                                                                        | disposal uses up la          | nd needed for oth                           | ner purposes (1)         |                        |                        |                  |   |  |