<u>Chemical energetics – 2020 O Level</u>

1. Nov/2021/Paper_11/No.20

The energy profile diagram for both the catalysed and uncatalysed reactions between N_2 and H_2 , in the Haber process, is shown.

What is the activation energy for the formation of NH₃ in the presence of a catalyst?

2. Nov/2021/Paper 12/No.20

The energy profile diagram of a chemical reaction is shown.

What is the value of the activation energy of the reaction?

A -200 kJ/mol B -100 kJ/mol C +100 kJ/mol D +200 kJ/mol

3. Nov/2021/Paper 12/No.21

Which statement describes the conversion of magnesium atoms to magnesium ions?

- A The change is reduction because there has been a gain of electrons.
- **B** The change is oxidation because there has been a loss of electrons.
- **C** The change is reduction because there has been a loss of electrons.
- **D** The change is oxidation because there has been a gain of electrons.

4. Jun/2020/Paper_21/No.3

The equation for the decomposition of hydrogen peroxide is shown.

$$2H_2O_2 \rightarrow 2H_2O + O_2$$

A sample containing 1.00 mol of hydrogen peroxide is completely decomposed.

This sample releases 98.0 kJ of heat energy.

(a) Calculate the heat energy released when 680 g of hydrogen peroxide is completely decomposed.

	heat energy released kJ [2]
(b)	Use ideas about bond breaking and bond forming to explain why the decomposition of hydrogen peroxide is exothermic.

.....

.....[2]

(c) The energy profile diagram for the decomposition of hydrogen peroxide is shown.

Identify the energy changes.

change A		
	42	[2]

(d) The rate of decomposition of hot H_2O_2 is greater than that of cold H_2O_2 .

Use ideas about particles to explain why.

	~~~	 	
- 3			
		 • • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •
		 	[2]

[Total: 8]

# **5.** Jun/2020/Paper_22/No.2

Hydrogen reacts with oxygen as shown in the equation.

$$2H_2(g) \ + \ O_2(g) \ {\longrightarrow} \ 2H_2O(I)$$

A sample containing 1.00 mol of hydrogen,  $\mathbf{H}_{\mathbf{2}}$ , is completely combusted.

This sample releases 286 kJ of heat energy.

(a) Calculate the heat energy released when 25.0 g of hydrogen is completely combusted.

at energy released

		rieat eriergy released k5 [2]
(b)		e ideas about bond breaking and bond forming to explain why this reaction is exothermic.
		[2]
(c)	The	reaction shown also represents the overall process that occurs within a hydrogen-oxyger cell.
	(i)	Describe one advantage of using a hydrogen-oxygen fuel cell to power a motor vehicle rather than burning gasoline.
		[1]
	(ii)	Complete the equations for the two electrode reactions that happen in a hydrogen-oxyger fuel cell.
		$H_2 \rightarrow \dots + 2e^-$

[2]

[Total: 7]

 $O_2$  + 4H⁺ + 4e⁻  $\rightarrow$  .....