<u>The Periodic Table – 2020 O Level</u>

1. Nov/2021/Paper 11/No.27

An atom of which element has the same electronic configuration as an atom of an ion of strontium?

- A calcium
- B krypton
- C rubidium
- **D** selenium

(a)	Δdr	op of bromine liquid was placed in a sealed glass jar.
(α)		
	Arte	er a time, the colour of the bromine had spread throughout the jar.
	Exp	lain this observation in terms of the kinetic particle theory.
(b)	Chlo	orine, bromine and iodine are halogens.
	(i)	State the trend in the colour of the halogens from chlorine to iodine.
	(ii)	State the physical state of chlorine and jodine at room temperature and pressure.
		chlorine
		iodine
	(iii)	Chlorine is used to make other chemicals.
		Staté one other use of chlorine.

Deduce the molecular formula of this compound.

. [1]

(d) Fluorine reacts with aqueous sodium hydroxide to produce sodium fluoride, NaF, water and oxygen.

$$2F_2$$
 + 4NaOH \rightarrow 4NaF + $2H_2$ O + O_2

Calculate the maximum volume of oxygen produced, in dm³, at room temperature and pressure, when 0.037 mol of sodium hydroxide react completely with fluorine.

Give your answer to two significant figures.

Pla	tinum	and vanadium are both transition elements.	
(a)		nsition elements are metals which are hard, strong and have high melting points a ing points.	and
	Sta	te two other properties which are typical of transition elements but not of all metals.	
	1		
	2		 [2
(b)	Van	hadium(V) oxide, V_2O_5 , is a catalyst in the Contact process.	
	(i)	State how a catalyst increases the rate of a chemical reaction.	
			 11
	(ii)	State the conditions used in the Contact process.	
			[2
(c)	Van	hadium(V) oxide is reduced to vanadium by heating with aluminium.	
	Cor	mplete the equation for this reaction.	
		$3V_2O_5 +Al \rightarrowV +Al_2O_3$	[1
(d)	A fu	nel cell generates electricity when hydrogen and oxygen react on platinum electrodes.	
	(i)	Name the process used in industry to separate oxygen from air.	
		**	[1
	(ii)	The reaction at one of the electrodes in the fuel cell is shown.	
		${\rm O_2}$ + 2 ${\rm H_2O}$ + 4 ${\rm e^-}$ \rightarrow 40 ${\rm H^-}$	
		State whether this is an oxidation or reduction reaction.	
		Explain your answer.	
			[1

3.

Nov/2021/Paper_21/No.5

[Total: 8]

4.			I/Paper_21/No.9 is a metal in Group II of the Periodic Table.	
	(a)	Cal	cium can be used as a reducing agent.	
		Des	scribe a test for reducing agents.	
		test		
		obs	ervationsr	 2]
	(b)	An i	ion of calcium has the symbol	-,
	()		⁴⁴ ₂₀ Ca ²⁺	
		Dec	duce the number of electrons and neutrons in this ion.	
		nun	nber of electrons	
		nun	nber of neutrons	
	(c)	Wh	ا en calcium carbonate is heated in a closed container, an equilibrium mixture is formed.	2]
	(0)	V V I I	$CaCO_3(s) \iff CaO(s) + CO_2(g)$	
		The	e forward reaction is endothermic.	
		(i)	Describe and explain the effect, if any, on the position of equilibrium when a hole is made in the container.	le
		(ii)	Describe and explain the effect, if any, on the position of equilibrium when the temperatur is increased.	е
			[2	2]
	(d)		en heated, calcium oxide reacts with chlorine to form calcium chloride and a gas whic ghts a glowing splint.	;h
		Cor	mplete the equation for this reaction.	
			2CaO + →CaCl ₂ +	1]

(e) Calcium chloride is soluble in water.Name one other calcium salt which is soluble in water.

......[1]

[Total: 10]

5.	Nov	/2021	/Daner	22/No.4	10
J.	INOV	/ 2021	/Paper	ZZ/ NO.4	+C

(c) Sodium and potassium react with water in a similar way to lithium.

(i)	Explain, in terms of their electronic configuration, why lithium, sodium and potassium al react in a similar way.
	[1
(ii)	Describe the trend in reactivity of the Group I elements lithium, sodium and potassium.
	[1]

		1/Paper_22/No.9 a metal in Group IV of the Periodic Table.		
(a)	An	ion of lead has the symbol		
		²⁰⁷ ₈₂ Pb ²⁺		
	Dec	duce the number of electrons and neutrons in this ion.		
	nun	nber of electrons		
	nun	nber of neutrons[2]		
(b)	Lea	$\operatorname{Id}(\operatorname{IV})$ oxide, PbO_2 , is an oxidising agent.		
	(i)	Describe a test for oxidising agents.		
		test		
		observations[2]		
	(ii)	${\rm Lead}({\rm IV})$ oxide reacts with concentrated hydrochloric acid to form ${\rm lead}({\rm IV})$ chloride, ${\rm PbC}l_4$, and water.		
		Construct the equation for this reaction.		
		[1]		
(c)	Wh	en lead (IV) chloride is warmed in a closed container an equilibrium mixture is formed.		
	The forward reaction is exothermic.			
		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
	(i)	Describe and explain the effect, if any, on the position of equilibrium when the concentration of chlorine is increased.		

(ii)	Describe and explain the effect, if any, on the position of equilibrium when the temperature is increased.
	[2]
Nar	ne a lead salt which is soluble in water.
	[1]

[Total: 10]

7. Jun/2020/Paper_11/No.23

The diagram shows part of the Periodic Table.

Which element has the highest proton number and which element has the largest number of valence electrons?

	highest proton number	highest number of valence electrons
Α	Ca	Ca
В	Ca	Cl
С	Li	Ca
D	• Li	C1

8. Jun/2020/Paper_11/No.24

A lump of element X can be cut by a knife.

During its reaction with water, X floats and melts.

What is X?

- A calcium
- B copper
- C magnesium
- **D** potassium

Jun/2020/Paper 11/No.25

Which statement about the properties of some elements is correct?

- Α All noble gases are unreactive due to having eight electrons in their outer shells.
- В The Group VII element astatine, At₂, is expected to be a black solid at room temperature.
- С The reactivity of the elements in both Group I and Group VII increases down the group.
- When aqueous chlorine is added to aqueous potassium bromide there is no change in colour.

10. Jun/2020/Paper 12/No.24

A lump of element X can be cut by a knife.

During its reaction with water, X floats and melts.

What is X?

- A calcium
- В copper
- С magnesium
- D potassium

11. Jun/2020/Paper 12/No.25

Pacalitibility of the second o Chlorine is passed into separate samples of aqueous potassium iodide and aqueous potassium bromide.

In which solutions is there a colour change?

	KI(aq)	KBr(aq)	
Α	✓	✓	key
В	✓	X	✓= yes
С	X	✓	<i>x</i> = no
D	X	X	

12. Jun/2020/Paper_21/No.8 This question is about the chlorides of the elements in Period 3.

	-	
(a)	Stat	te the electronic configuration of the positive ion in sodium chloride, NaCl.
		[1
(b)	Mag	gnesium chloride crystals can be prepared by reacting an insoluble base with an acid.
	(i)	Name an insoluble base and the acid that can be used.
		insoluble base
		acid
		[1
	(ii)	Describe the essential practical details for the preparation of pure magnesium chloride crystals.
		[3
(c)	Anh	ydrous aluminium chloride contains 20.2% by mass of aluminium.
	(i)	Show that the empirical formula for anhydrous aluminium chloride is ${\rm A} l {\rm C} l_3$.

[2]

	The sample contains 0.00876 mol of anhydrous aluminium chloride.	
	Calculate the relative molecular mass and give the molecular formula for anhydrogaluminium chloride.	us
	relative molecular mass	
	molecular formula	 [2]
(d)	Silicon(IV) chloride, SiC l_4 , has a simple molecular structure.	
	Predict one physical property of silicon(IV) chloride at room temperature.	[1]
	[Total: 1	
	··· Par	

(ii) A sample of anhydrous aluminium chloride has a mass of 2.34 g.

13.	Jun/	2020/	'Paper	_21/No.	9
-----	------	-------	--------	---------	---

Iron is a transition element.

(a)	State two physical properties of fron that are typical of a transition element.
	1

[2]

(c) Iron(II) sulfate thermally decomposes to form iron(III) oxide, sulfur dioxide and sulfur trioxide.

$$2\mathsf{FeSO}_4(\mathsf{s}) \, \longrightarrow \, \mathsf{Fe}_2\mathsf{O}_3(\mathsf{s}) \, + \, \mathsf{SO}_2(\mathsf{g}) \, + \, \mathsf{SO}_3(\mathsf{g})$$

(i) Explain how the equation shows that this reaction involves oxidation.

-		
	[1	J

(ii) A sample of $6.08\,\mathrm{g}$ of $\mathrm{FeSO_4}$ is heated until all the sample has thermally decomposed.

Calculate the volume of sulfur dioxide formed, $SO_2(g)$, in dm^3 , measured at room temperature and pressure.

volume of sulfur dioxide dm³ [3]

(d)	Iron(III) oxide reacts with dilute sulfuric acid to make iron(III) sulfate, $Fe_2(SO_4)_3$.
	Construct the equation for this reaction.
	[1]
(e)	Describe a chemical test that can be used to distinguish between aqueous solutions of $\text{iron}(\Pi)$ sulfate and $\text{iron}(\Pi\Pi)$ sulfate.
	chemical test
	result with iron(II) sulfate
	result with iron(III) sulfate
	[2]
	[Total: 10] Rapa Carring in the second seco

This	s question is about some of the oxides of the elements in Period 3.
(a)	State the electronic configuration of the negative ion in sodium oxide, $\mathrm{Na_2O}$.
	[1]
(b)	Magnesium oxide is an insoluble base that can be used to prepare pure magnesium sulfate crystals.
	Describe the essential practical details for the preparation of pure magnesium sulfate crystals from magnesium oxide.
	[4]
	Palpa Call

14. Jun/2020/Paper_22/No.7

(C)	An	oxide of phosphorus contains 43.7% by mass of phosphorus.
	(i)	Show that the empirical formula for this oxide is P_2O_5 .
		[2]
	(ii)	A sample of this oxide has a mass of 2.56 g.
		The sample contains 0.00901 mol of the oxide.
		Calculate the relative molecular mass and hence the molecular formula for this oxide of phosphorus.
		Co
		000
		relative molecular mass
		molecular formula[2]
(d)	Sta	te the structure and bonding in silicon dioxide, SiO ₂ .
` ,		[1]
		[Total: 10]

15.	5. Jun/2020/Paper_22/No.8 Copper is a transition element.		
	(a)	State two properties that are typical of the compounds of a transition element.	
		1	
		2	 [2]
	(b)	Aqueous copper(II) sulfate reacts with aqueous potassium iodide.	
		The ionic equation for this reaction is shown.	
		$2Cu^{2+}(aq) + 4I^{-}(aq) \rightarrow 2CuI(s) + I_2(aq)$	
		Explain how this equation shows that the reaction involves oxidation.	
			[1]
	(c)	Anhydrous copper(II) sulfate decomposes when heated strongly.	
		$CuSO_4(s) \rightarrow CuO(s) + SO_3(g)$	
		A cample of 6.40 a of CuSO, is heated until all of the cample has thermally decomposed	

A sample of $6.40\,\mathrm{g}$ of $\mathrm{CuSO_4}$ is heated until all of the sample has thermally decomposed.

Calculate the volume of sulfur trioxide formed, in dm³, measured at room temperature and pressure.

volume of sulfur trioxide dm³ [3]

(d)	Iron	reacts with aqueous copper(II) sulfate to make aqueous iron(II) sulfate and copper.
	(i)	Construct the ionic equation for this reaction.
		[1]
	(ii)	Suggest one observation that would be seen during this reaction.
		[1]
(e)		cribe a chemical test that can be used to distinguish between aqueous solutions of ($\rm II$) sulfate and copper($\rm II$) sulfate.
	che	mical test
	resu	ılt with iron(II) sulfate
	resu	ılt with copper(II) sulfate[2]
		[Total: 10]
		Califille
		Palpa Califild Property of the second secon