<u>Chemical energetics – 2022J O Level 5070</u>

1. June/2022/Paper_11/No.18

For the forward reaction of a reversible reaction, the enthalpy change of reaction, ΔH , is -50 kJ/mol and the activation energy, E_a , is +60 kJ/mol.

What is the activation energy of the reverse reaction?

- A -110 kJ/mol
- B -10 kJ/mol
- C +10 kJ/mol
- **D** +110 kJ/mol

2. June/2022/Paper_11/No.19

The diagram shows a titration experiment.

Which row about the reaction in the conical flask is correct?

	the reaction is	the value of ΔH is
Α	endothermic	negative
В	endothermic	positive
С	exothermic	negative
D	exothermic	positive

3. June/2022/Paper_12/No.18

Which reaction is exothermic?

- A combustion of methane
- B cracking of hydrocarbons
- C decomposition of water into hydrogen and oxygen by electrolysis
- D photosynthesis in plants

4. June/2022/Paper_12/No.19

What is the correct balanced equation and enthalpy change, ΔH , for the complete combustion of butanol, C₄H₉OH?

A
$$C_4H_9OH(1) + 5O_2(g) \rightarrow 4CO_2(g) + 5H_2O(g) \Delta H = -2676 kJ/mol$$

B
$$C_4H_9OH(I) + 5O_2(g) \rightarrow 4CO_2(g) + 5H_2O(g)$$
 $\Delta H = +2676 \text{ kJ/mol}$

C
$$C_4H_9OH(I) + 6O_2(g) \rightarrow 4CO_2(g) + 5H_2O(g)$$
 $\Delta H = -2676 \text{ kJ/mol}$

D
$$C_4H_9OH(I) + 6O_2(g) \rightarrow 4CO_2(g) + 5H_2O(g)$$
 $\Delta H = +2676 \text{ kJ/mol}$