

Cambridge International Examinations

Cambridge Ordinary Level

CANDIDATE NAME					
CENTRE NUMBER		CANDID NUMBE			

COMPUTER SCIENCE

2210/01

Paper 1 Theory SPECIMEN PAPER For Examination from 2016

1 hour 45 minutes

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name in the spaces at the top of this page.

Write in dark blue or black pen.

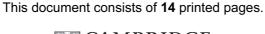
You may use an HB pencil for any diagrams, graphs or rough working.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Calculators must not be used in this paper.

Answer all questions.


No marks will be awarded for using brand names of software packages or hardware.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The maximum number of marks is 75.

International Examinations

1 A company selling CDs uses a unique 6-digit identification number for each CD title. The rightmost digit (position 1) is a *check digit*.

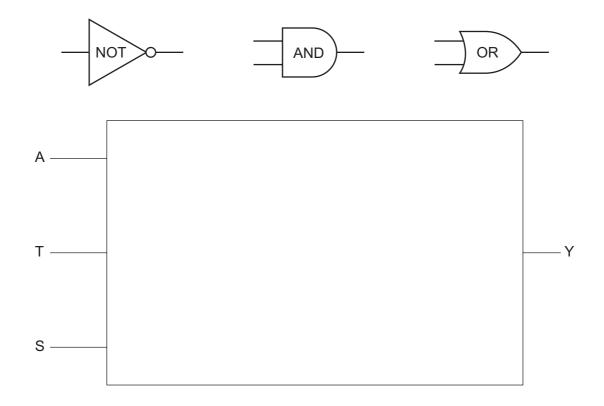
The validity of the number and check digit is calculated as follows:

- multiply **each** digit by its digit position
- add up the results of the multiplications
- divide the answer by 11
- if the remainder is 0, the identification number and check digit are valid.
- (a) Show whether the following identification numbers are valid or not. You **must** show how you arrived at your answer.

Identification number 1: 4 2 1 9 2 3
working:
valid or not valid?
Identification number 2: 8 2 0 1 5 6
working:
valid or not valid?[3]

	(b)	Find the check digit for this identification number.
		5 0 2 4 1
		working:
		check digit: [2]
	(c)	Describe, with examples, two different types of data entry errors that a check digit would detect.
		1
		2
		[2]
2	to r	nil is setting up a new computer system to record television programmes. He wants to be able ecord, view and then erase programmes that he does not want to keep. He has chosen to use D-RAM as an optical storage medium.
	Exp	plain to Kamil why it is better to use DVD-RAM rather than DVD+RW or DVD-RW.
	1	
	2	
		[2]

3 An alarm, Y, sends a signal (Y = 1) when certain fault conditions in a chemical process are detected. The inputs are:


Input	Binary value	Condition
	1	acidity > 5
A	0	acidity <= 5
T	1	temperature >= 120°C
'	0	temperature < 120°C
6	1	stirrer bar ON
S	0	stirrer bar OFF

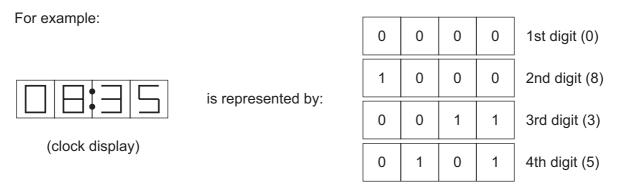
The alarm, Y, returns a value of 1 if:

either temperature >= 120°C AND stirrer bar is OFF

or acidity > 5 AND temperature < 120°C

(a) Draw the logic circuit for the above system using these logic gates.

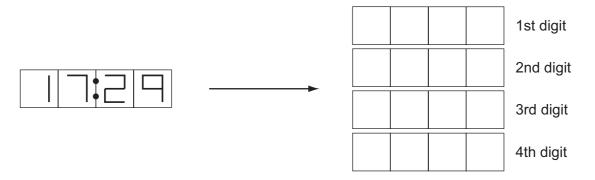
[5]


(b) Complete the truth table for this alarm system.

Α	Т	S	Y
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

[4]

4 A digital alarm clock is controlled by a microprocessor. It uses the 24-hour clock system (i.e. 6 pm is 18:00).


Each digit in a typical display is represented by a 4-digit binary code.

(a) What time is shown on the clock display if the 4-digit binary codes are:

0	0	0	1
0	1	1	0
0	1	0	0
1	0	0	1

(b) What would be stored in the 4-digit binary codes if the clock display time was:


© UCLES 2014 2210/01/SP/16

[4]

[2]

	(c)	The clock alarm has been set at 08:00.	
		Describe the actions of the microprocessor which enable the alarm to sound at 08:00.	
5		es of data transferred using a serial cable are checked for errors at the receiving end using n parity check.	
	Car	these bytes of data pass the even parity check?	
	(a)	01010101	
			[1]
	(b)	11001000	
			[1]
	(c)	How can any errors be corrected?	
			[2]

6 The conditions in a fish tank are being controlled using sensors and a microprocessor. To keep the fish healthy, the temperature must be at 25°C and the oxygen content needs to be 20 ppm (parts per million). The tank contains a heater and an oxygen inlet controlled by a valve.

(a)	name the two sensors used in this application.	

	Sensor A	
	Sensor B [2	
b)	Describe how the sensors and the microprocessor are used to maintain the correct conditions in the fish tank.	ct
		•••
		ŧ]
c)	What safeguards are needed to stop the fish tank temperature rising too high?	

[1]

authoring language used to reate documents to be viewed on the World Wide Web	Browser
computer that responds to equests to provide information and services over the Internet	HTML
defines how messages are transmitted and formatted over the Internet	MAC address
numerical ID for each device on the Internet	Internet Server
software that enables users to access/view documents and other resources on the Internet	IP address
unique ID for a network interface card	http

8	Cor	mput	er memories are measured in terms of the number of bytes.	
	(a)	(i)	What is meant by the term byte?	
				 1]
		(ii)	The number of bytes in a Gigabyte can be written as 2^x What is the value of x?	
			[1]
	(b)	Fla	sh memories and CD-RWs are used as backing media for computers.	
		Giv	e two differences between these two media.	
		1		
		2	[2	
			L ⁴	-,
9	And	drew	sends a large document to a printer.	
	(a)	Sta prin	te the name for the area of memory used to store temporarily the data being sent to th ter.	е
			[′	1]
	(b)		e printer runs out of paper during the printing job. A signal is sent back to the computer to temporarily its current task.	0
		Nar	me this type of signal.	
			[′	1]
				-

© UCLES 2014 2210/01/SP/16

10	In a	sim	ple symmetric encryption system, each letter of the alphabet is substituted with another.
	The	plai	n text message:
	The	quio	ck brown fox jumps over the lazy dog.
	bec	ome	s the cypher text message:
	Zag	tow	vs jumpy dmh coilr mngu zag bfke qmx.
	(a)	(i)	Decode this cypher text message.
			Agbbm Pmubq
			[2]
		(ii)	Convert these words to cypher text.
			Computer Science
			[2]
	(b)	wha	th the person who sends the message and the person who receives it need to know at the substitution key is, and they need to keep this secret. A copy of the stitution key has been sent using SSL transmission.
		(i)	What is meant by SSL?
			[1]
		(ii)	How does SSL keep the copy of the key secret during transmission?
			[1]

11 Five security or data loss issues are shown on the left-hand side.

Five possible methods of data recovery or protection are shown on the right.

Draw a line to match each definition/description of **Issues** to the most appropriate **Methods of Data Recovery**.

Issues	Methods of Data Recovery
data loss caused by hard disk head crash	anti-spyware software
hacking into files and changing or deleting data	anti-virus software
introduction of software that self-replicates and can cause data loss	back-up files
reading of illegally accessed documents	encryption
software that logs/records all key presses on your computer without you knowing	passwords and a firewall

[4]

12	Look a	t these	two	pieces	of	code	9
12	Look a	t these	two	pieces	of	code	

A:	LDX #0 loop: LDA A, X ADC B, X STA C, X INX	FOR Loop = 1 TO 4 INPUT Number1, Number2 Sum = Number1 + Number2 PRINT Sum NEXT	
	CPX #16 BNE loop		
(a)	Which of these pieces of code is written	n in a high-level language?	
			[1]
(b)	Give one benefit of writing code in a hi	gh-level language.	
			[1]
(c)	Give one benefit of writing code in a lo	w-level language.	
			[1]
(d)	High-level languages can be compiled	or interpreted.	
	Give two differences between a compi	ler and an interpreter.	
	1		
	2		
			[2]

13 When a key is pressed on the keyboard, the computer stores the ASCII representation of the

character typed into main memory.

The	ASCII rep	orese	entati	on fo	r A	is 65	(der	nary),	for E	3 is 6	6 (de	enary	/), et	С.				
Ther	e are two	lette	ers st	ored	in tl	he fol	lowii	ng me	emor	y loc	atior	ns:						
	ation 1 ation 2	A C																
(a)	(i) Shov	v the	cont	ents	of L	ocatio	on 1	and	Loca	tion 2	2 as	bina	ry us	ing 8	bits.			
	Loca	tion ′	1															
			Г															
	Loca	tion 2	2															
																		[2]
(ii) Shov	v the	cont	ents	of L	ocatio	on 1	and	Loca	tion 2	2 as	hexa	deci	mal.				
	Loca	ation	1															
	Loca	ation	2															[2]
(b)	The follow	ving	macl	nine (code	e insti	ucti	on is	store	ed in	a loc	cation	n of n	nain	mem	ory:		
	1 1	1	1	1	0	1	0	1	0	0	1	0	1	1	1			
(Convert t	his b	inarv	patt	ern	into h	exa	decim	nal.	•		•	•	•	•	_		
	Convert this binary pattern into hexadecimal.										[4]							
•																		
	Explain v nexadeci																	
																		[2]

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.