Pseudocode 1995-2019

May/June 1995

Question 10:

A shop sells items each of which has a unique identifying number. When a customer purchases an item, its identifying number is entered at a terminal. A computer looks up this number in a file and returns the description and price of the item. After the last item a '#' is entered and the computer calculates the change.

Part of the file item stocking shown here.

CODE	DESCRIPTION	PRICE
1276	Рор	65
1489	Chocolate Bar	85
2371	Plain Biscuit	80
2483	Chocolate Biscuit	90
3514	Cereals	130
3515	Butter	90
3760	Eggs	70
4010	Tin Soup	60
4127	Tin Fruit	80

(a) Write an algorithm to allow a till receipt to show

- The name of each article purchased
- Its price
- The total cost of purchases
- The amount the customer offers
- The change due to the customer.

Test your algorithm with this data.

(a)total = 0

read code

While code <># Do Look up description & price Print description & price Total = total + price Read code Endwhile Print total cost Read amount offered

Print offered offered Catalogue & print change.

Question 13:

The following algorithm is used to award grades in an examination. The examination consists of two papers which are given marks called mark A amd mark B.

Computer Science 2210 READ name, mark A, mark B IF mark A is greater than 70 THEN IF mark B is greater than 70 THEN Grade is 1 ELSE IF mark B is greater than 40 THEN Grade is 2 ELSE Grade is fail **ENDIF ENDIF** ELSE IF mark A is greater than 40 THEN Grade is 3 ELSE Grade is fail **ENDIF ENDIF** ELSE Grade is fail ENDIF ENDIF **PRINT** name, grade For each of the following sets of data write down the output. (a)John Williams, 80, 85 (b)Mary Brown, 45, 60 (a)John Williams I (b)Mary Brown 3 (c)Ian Ford Fail _____ _____

May/June 1997:

Question 14: Wages at Microsoft are paid using \$ 20 and \$ 10 bank notes. Write an algorithm which will:

- Input a request for a sum of money
- Only accept a sum of money which is multiple of 10
- Output the number of \$20 notes required
- Output the number of \$ 10 notes required.

The total number of notes should be minimum

You should explain the meaning of any functions that you use.

[6]

Computer Science 2210 SOLUTION ONE SOLUTION 2

SOLOHION ONE	
{Initialisation}	{Check for valid input}
twenty = 0	REPEAT
ten = 0	. READ sum of money
{Check for valid input}	UNTIL sum is divisible by 10
REPEAT	{Calculate number of \$20 notes}
READ sum of money	twenty = sum of money DIV 20
UNTIL sum is divisible by 10	{Calculate number of \$10 notes}
{Calculate number of \$20 notes}	ten = sum of money MOD 20
WHILE sum >= 20 DO	PRINT twenty, ten
sum = sum -20	
twenty = twenty + I	
ENDWHILE	
{Check to see if any \$10 notes needed}	
IF sum = 10 THEN ten = I	
{Output results}	
PRINT twenty, ten	

Oct/Nov 1997:

Question 11:

Mr Grantham grades his students' examination marks. To do this he needs to know the lowest and highest marks, the range of marks (highest minus lowest) and the average mark, (the total number of marks divided by the number of students). There are 30 students in the class and the marks are out of 100.

(a)Using this design, or otherwise, write an algorithm to read the marks and to print the smallest mark, largest mark, range of marks and average mark [10]

(b) Give two advantages of using top-down design solving such a problem.

Advantage I.....

(a) READ mark LOWEST = mark HIGHEST = mark TOTAL = mark FOR I: 1 to 30 DO READ mark IF mark is less than lowest THEN Lowest = mark ENDIF IF mark is greater than highest THEN Highest = mark ENDIF Total = total + mark NEXT I Range = highest-lowest Average = total/30 PRINT lowest, highest, range, average (b) Advantage 1: It is easy to write and to modify Advantage 2: The main task is split into further tasks so it is easy to understand.

May/June 1999:

```
Question 14
Read this algorithm.
Value = 0
Next-value = 0
Input Value
Input Next-value
While Next-value is not equal to zero do
      If Next-value is greater than Value then
             Value is equal to Next-value
      Endif
      Input Next-value
Endwhile
Output Value
(a)What is the output if the following numbers are input. [2]
(b)Write a modified algorithm to solve the same problem but always end after four, numbers have been
input [3]
(a)8
(b)Value = O
  Next-value = 0
  Counter = 0
  Input Value
  Input Next-value
        .Repeat
                 If Next-value is not equal to zero do
                Value is equal to Next-value
        Counter = Counter + I
        End if
Input Next-value
        Until Counter is <=4
End while
Output Value
```

Oct/Nov 1999:

Question 16: A microprocessor controls an oven used to bake bread. (a)Describe the input data needed by the microprocessor (b)Write an algorithm that uses the input data to control the process of baking the bread

(a)The temperature at which the cake has to be baked and the time of the baking process. Also, program number (already stored programs) and weight of the dough could be input.

(b)Select baking on the oven Time = o Temperature = 0 Input time = t Input Temperature = p Switch Heater on Switch timer on If temperature >= p Switch Heater off If time >= t Sound Buzzer Endif Endif Oct/Nov 2000: **Question 17** Using pseudo code or otherwise, write an algorithm which will accept ten numbers and print out the smallest number. [5] READ number LOWEST = number (Process rest of number) (Loop to read next 9 numbers) FOR i = 2 to 10 DO READ mark IF number is less than lowest THEN Lowest = number ENDIF NEXT i PRINT LOWEST

May/June 2001:

Question 17

An algorithm is needed to input the heights-of 15 students in centimeters and print out the height of the tallest student in meters and centimeters. Write a detailed algorithm to do this. [5]

READ height HIGHEST = height (Loop to read next 14 heights) FOR i = 2 to 14 DO READ height IF height is greater than HIGHEST THEN HIGHEST = height ENDIF NEXT i Height in meters = highest/100 PRINT Height in meters, highest

Oct/Nov 2001:

Question 16:

Employees of a shop are entitled to a discount of 10% on the value of goods bought from the shop. However, if an employee has worked at the shop for five or more years, they are entitled to a discount of 20%. Only employees are allowed discounts. The discount on electrical goods is fixed at only 10%.

INPUT employee

(if employee <> "yes") then (discount = 0%)

else (if no_of_years < 5) or (type_of_good = "electrical")

then discount = 10%

```
else discount = 20%
```

Oct/Nov 2002:

Question 19:

Using pseudocode or otherwise, write an algorithm which will input any three different numbers and then print them out in ascending order. [4]

Set a, b, c = 0Input a, b, c Max: = aMin: = aIf b > max then Max: = bElse If $b < \min$ then Min: = bElse If c > max then Max: = cElse If c < min then Min: = cEnd if Print min If a ≠ max AND a ≠ min then

Print a		-
Else		
lf b≠max AND b≠min then		
Print b		
Else		
lfc≠max AND c≠min then		
Print c		
End if		
Print max		
End		

May/June 2003:

Question 17:

A school wants to monitor the number of hours spent by a class of 30 students on the Internet. Using pseudo-code or otherwise, write an algorithm which will;

- for each student, record the times logged on and logged off
- calculate the length of time each student spends online

• calculate and output the average length of time per day spent by each student on the Internet.[6]

```
Set logon time = 0
Set logoff time = 0
Total time = 0
Counter = 0
WHILE Counter <= 30
  INPUT logon time
  INPUT logoff time
 READ INPUT
 Total time = logoff time - login time
 Counter = counter - 1
 Repeat
 Until Total time <= 24
END WHILE
Calculate average length of time/day= Total time / 30
PRINT average length
END
```

OCT/NOV 2003:

Question 16:

(a)Write an algorithm, using pseudocode or otherwise which;

- inputs 50 numbers.
- checks whether each number is in the range 1000 to 9999.
- outputs how many of the input numbers were out of range.
- outputs the percentage of input numbers which were out of range. [6]

May/June 2004:

Question 15

Read this algorithm. The algorithm converts a temperature from degrees Centigrade to degrees Fahrenheit.

(a)Write down the output for each of the following inputs:

(i)1 [1]

(ii)5 [1]

(b)Using pseudocode, or otherwise, write an algorithm that will input the hourly temperatures for one day in Centigrade and print out in Fahrenheit

• the maximum temperature

- the minimum temperature
- the average temperature

for that day.

```
(a) (i) 33.8
   (ii) 41
(b) (i) sum = 0
                                       (ii) sum = 0
      min = 100
                                            min = 100
      max = 0
                                            max = 0
      count = 1
                                            count = 1
      while count <= 24 do
                                            repeat
          input temp
                                                input temp
          F = (temp*1.8) + 32
                                                F = (temp*1.8) + 32
          sum = sum + F
                                                sum = sum + F
          if F < min then min = F
                                                if F < min then min = F
          if F > max then max = F
                                                if F > max then max = F
           count = count + 1
                                                count = count + 1
      endwhile
                                            until count > 24
      average = sum/24
                                            average = sum/24
      print average, min, max
                                            print average, min, max
```

OCT/NOV 2004:

Question 19:

The following diagram shows a rail network.

Compiled By: Naqash Sachwani

Computer Science 2210

The rail network consists of 10 stations. The fare between each station is \$2. There is a 10% discount when 3 or more passengers travel together. Tickets can be purchased at any station using automated terminals.

Using pseudocode, or otherwise, write an algorithm for the automated terminals to:

- input the starting station number, the destination station number and the number of passengers
- calculate the total fare and output the amount to be paid
- calculate the change (if any)
- issue the rail ticket(s) and change [3] repeat

until no more customers

May/June 2005:

Question 17:

Using pseudocode or otherwise, write an algorithm that will input 25 marks and output the number of DISTINCTION, MERIT, PASS or FAIL grades.

A mark greater than 69 will get a DISTINCTION, a mark between 69 and 60 (inclusive) will get a MERIT and a mark between 59 and 50 (inclusive) will get a PASS.

10 INPUT MARK 20 FOR M = 1 To 25 30 IF MARK > 69 40 PRINT DISTINCTION 50 ELSE IF MARK < 69 AND > 60 60 PRINT MERIT 70 ELSE IF MARK < 59 AND > 50 80 PRINT PASS 90 ELSE PRINT FAIL 100 END IF 110 NEXT M 120 END IF

OCT/NOV 2005:

Question 17:

A school uses a computer to store student marks obtained in an end of term mathematics exam. There are 150 students doing the exam and the maximum mark is 100.Write an algorithm, using pseudocode or otherwise, which

- inputs the marks for all students
- checks if each mark is in the correct range and, if not, the mark is re-input
- outputs the smallest mark
- outputs the highest mark
- outputs the average mark for the exam.

```
m1 = 100

m2 = 0

sum = 0

n = 1

while n < 151 do

repeat

read mark

until (mark >= 0 and) mark <101

if mark < m1 then m1 = mark

if mark > m2 then m2 = mark

sum = sum + mark

n = n + 1

endwhile

average = sum/150

output average, m1, m2
```

May/June 2006:

16 (a) Fuel economy for a car is found using the formula:

BMI = weight in kilograms

(height in metres) x (height in metres)

What would be the Fuel Economy of a car travelling 40 km on 10 litres of fuel? [1]

(b) The Fuel Economy for 1000 cars is to be calculated using the formula in Question 16(a). Write an algorithm, using pseudocode or otherwise, which inputs the Distance Travelled (km) and the Fuel Used (litres) for 1000 cars. The Fuel Economy for each car is then calculated and the following outputs produced:

- Fuel Economy for each car
- average (mean) Fuel Economy for all of the cars input
- the best Fuel Economy (i.e. highest value)

• the worst Fuel Economy (i.e. lowest value) [6]

```
(a)20
(b)LET BMI = 0
  LET COUNTER = 0
  REPEAT
  INPUT ID
  INPUT WEIGHT(kg)
  INPUT HEIGHT(m)
  LET BMI = WEIGHT(kg)/HEIGHT(m)*HEIGHT(m)
   IF BMI > 25
  PRINT "OVER WEIGHT"
  ELSE
  IF BMI <25 AND >= 19
  PRINT "NORMAL"
  ELSE
  PRINT "UNDER WEIGHT"
  END IF
  UNTIL COUNTER = 30
  PRINT ID, BMI
```

Oct/Nov 2006:

9 A computer program is required which inputs 10 numbers, multiplies them together and finally outputs the answer (the product). The following algorithm has been written to do this.

- 1 count = 0
- 2 product = 0
- 3 while count <= 10 do
- 4 input number
- 5 product = product * number
- 6 count = count + 1
- 7 print product
- 8 endwhile

```
(a) There are three errors in the algorithm. Locate and describe these errors. [3]
```

(b) A while ... do loop has been used in the algorithm. State another type of loop that could have been used. [1]

(a) error 1: product = 0 on line 2 should use product = 1

> error 2: loop control, count <= 10 on line 3 should use count < 10 or alternatively alter count value on line 1 to count = 1

- error 3: print value of product inside loop on line 7 output should come after the endwhile statement
- (b) Accept either of the following loop controls:

repeatfor count = 1 to 10ORORuntil count = 10next count(accept repeat11if line 1 changed to count = 1)

Question 20:

Compiled By: Naqash Sachwani

Temperatures (°C) are being collected in an experiment every hour over a 200-hour period. Write an algorithm, using pseudocode or otherwise, which inputs each temperature and outputs

- How many of the temperatures were above 20°C
- how many of the temperatures were below 10°C

```
    the lowest temperature that was input
count = 0
total1 = 0
total2 = 0
lowest = 1000
while count < 200 do
input temp
if temp < 10 then total1 = total1+1
if temp > 20 then total2 = total2+1
if temp < lowest then lowest = temp
count = count + 1
endwhile
output total1, total2, lowest
```

May/June 2007:

19 A company has 5000 CDs, DVDs, videos and books in stock. Each item has a unique5-digit code with the first digit identifying the type of item, i.e.

1 = CD 2 = DVD 3 = video 4 = book

For example, for the code 15642 the 1 identifies that it is a CD, and for the code 30055 the 3 identifies that it is a video.

Write an algorithm, using pseudocode or otherwise, that

- Inputs the codes for all 5000 items
- Validates the input code
- Calculates how many CDs, DVDs, videos and books are in stock
- Outputs the four totals. Sample program 1:

Sample program 2:

```
set c, d, v, b = 0: set count = 0
                                                   set c, d, v, b = 0: set count = 0
repeat
                                                   repeat
        input code
                                                           input code
        x = code/10000
                                                           if code >= 1000 and code < 2000 then c = c + 1
        v = INT(x)
                                                           else if code >= 2000 and code < 3000 then d = d + 1
        if y = 1 then c = c + 1
                                                           else if code >= 3000 and code < 4000 then y = y + 1
                 else if y = 2 then d = d + 1
                                                           else if code >= 4000 and code < 5000 then b = b + 1
                 else if y = 3 then v = v + 1
                                                                    else print "error"
                 else if y = 4 then b = b + 1
                                                           count = count + 1
                 else print "error"
                                                   until count = 5000
        count = count + 1
                                                   print c, d, v, b
until count = 5000
print c, d, v, b
```

(NOTE - OK to use statements such as if code begins with a 1 as code checks)

Oct/Nov 2007:

16 (a) Fuel economy for a car is found using the formula:

Fuel Economy = Distance Travelled (km) Fuel Used (litres)

Compiled By: Naqash Sachwani

What would be the Fuel Economy of a car travelling 40 km on 10 litres of fuel? [1]

(b) The Fuel Economy for 1000 cars is to be calculated using the formula in Question 16(a). Write an algorithm, using pseudocode or otherwise, which inputs the Distance Travelled (km) and the Fuel Used (litres) for 1000 cars. The Fuel Economy for each car is then calculated and the following outputs produced:

- Fuel Economy for each car
- average (mean) Fuel Economy for all of the cars input
- the best Fuel Economy (i.e. highest value)
- the worst Fuel Economy (i.e. lowest value)

May/June 2008:

12 Algorithms and programs use loops to control the number of times a particular procedure is used. Two methods are repeat ... until and for ... to.

(a) Write a procedure using both these loop methods to input 20 numbers into a variable called x.

(i) repeat ... until [2]

```
(ii) for ... to [2]
```

```
repeat
input x
count = count + 1
until count = 20
(ii)
for count = 1 to 20
input x
next count
(b) while...do
```

Question 16:

The washroom in a hotel uses lights controlled by a computer system. If the washroom is unoccupied for 10 minutes, the lights go out automatically. As soon as someone enters, the lights come on.

(b) Write down a set of instructions which would enable the computer to decide when to turn out the lights?

repeat

get signal from sensor if signal then set timer = 10 else if timer = 0 then switch light off else countdown timer until system switched off

19 Customers can withdraw cash from an Automatic Teller Machine (ATM).

• withdrawal is refused if amount entered > current balance

- withdrawal is refused if amount entered > daily limit
- if current balance < \$100, then a charge of 2% is made
- if current balance \$100, no charge is made

Write an algorithm which inputs a request for a sum of money, decides if a withdrawal can be made and calculates any charges. Appropriate output messages should be included. [5]

input amount

if amount > balance **then** x = 1

```
else if amount > daily limit then x = 1
```

else x = 0

while x = 0

if balance < 100 then charge = 0.02 * amount

```
else charge = 0
```

endwhile

```
if x = 1 then print "Sorry, withdrawal refused"
```

print charge

Oct/Nov 2008

19: The manufacturing cost of producing an item depends on its complexity. A company manufactures three different types of item, with costs based on the following calculations:

Item type 1: item cost = parts cost * 1.5 Item type 2: item cost = parts cost * 2.5 Item type 3: item cost = parts cost * 5.0

The company makes 1000 items per day.

Write an algorithm, using pseudocode, flowchart or otherwise, which

- inputs the item type and parts cost of each item
- outputs the item cost for each item
- calculates and outputs the average (mean) item cost per day (based on 1000 items being made). [5]

total cost = 0
for x = 1 to 1000
 input type, partcost
 if type = 1 then itemcost = partcost * 1.5}
 if type = 2 then itemcost = partcost * 2.5}
 if type = 3 then itemcost = partcost * 5.0}
 else print error
 totalcost = totalcost + itemcost
 print itemcost
next x
average = totalcost/1000
print average

May/June 2009

18: A small airport handles 400 flights per day from three airlines:

FASTAIR (code FA) SWIFTJET (code SJ)

KNIGHTAIR (code KA)

Each flight is identified by the airline code and 3 digits. For example, FA 156.

Write an algorithm, using pseudocode or otherwise, which monitors the 400 flights into and out of the airport each day. The following inputs, processing and outputs are all part of the monitoring process:

• input flight identification

- calculate number of flights per day for each of the three airlines
- output the percentage of the total flights per day by each airline
- any validation checks must be included [5]

```
fa = 0

sj= 0

ka = 0

for x = 1 to 400

input lettercode

input numbercode

if lettercode = "FA" then fa = fa + 1

if lettercode = "SJ" then sj = sj + 1

if lettercode = "KA" then ka = ka + 1

else print "error"

next x

fapercent = fa/4

sjpercent = sj/4
```

```
kapercent = sj/4
kapercent = ka/4
print fapercent, sjpercent, kapercent
```

Oct/Nov 2009. P11

17 (a) A car's speed is measured between points A and B, which are 200 km apart.

A _____ B

The final speed of the car is calculated using the formula:

	200			
	Time (hours)			
What is the final speed of a car if it ta	kes 2 hours to get from A to B? [1]			
(b) Write an algorithm, using pseudoo	code or otherwise, which inputs the times for 500 cars, calculates			
the final speed of each car using the f	ormula in part (a), and then outputs:			
 the final speed for ALL 500 cars 				
 the slowest (lowest) final speed 				
 the fastest (highest) final speed 				
• the average final speed for all the ca	ars. [6]			
(a) 100 (km/hr)				
<pre>(b) total = 0 highest = 0 slowest = 1000 for n = 1 to 500 input time finalspeed = 200/time print finalspeed total = total + finalspeed if finalspeed > highest then highest = finalspeed if finalspeed < slowest then slowest = finalspeed next n average = total/500 print average, highest, slowest</pre>				
May/June 2010. P12 16 (a) Write an algorithm, using pseudocode or a flowchart, which: • inputs 50 numbers				
• outputs now many of the numbers	were > 100 [3]			
 (b) Write an algorithm, using pseudoo inputs 100 numbers finds the average of the input numbers outputs the average [3] 	code or a flowchart, which: pers			
(a) total = 0	(b) total = 0			
for x = 1 to 50	for x = 1 to 100			
input number	. input number			
if number > 100 then total = tot	al + 1			
next x	total = total + number			
output total	next x			
Sulput Iolai	average = total/100			
	output average			

May/June 2010. P11

18: A group of students were monitoring the temperature every day over a one-year period. Readings were taken ten times every day (you may assume a year contains 365 days). Write an algorithm, using pseudocode or flowchart, which

- inputs all the temperatures (ten per day)
- outputs the highest temperature taken over the year
- outputs the lowest temperature taken over the year

• outputs the average temperature per day

• outputs the average temperature for the whole year [7]

highest = -100: lowest = 100: total_year = 0

for c = 1 to 365

total_day = 0

for d = 1 to 10

read temp

total_day = total_day + temp

total_year = total_year + temp

if temp > highest then highest = temp

if temp < lowest then lowest = temp

next d

average_day = total_day/10

print average_day next c

```
average_year = total_year/3650
```

print highest, lowest, average_year

12: A golf course charges \$10 for each game of two people. Each additional person incurs a further charge of \$2 per game. If they book two or more games in advance, they get a 10% discount on the total charge.

The following program has been written in pseudocode to calculate the charges for a game.

- 1 extracost = 0
- 2 input numberpeople, numbergames
- 3 charge = 10 * numbergames
- 4 extrapeople = numberpeople 2
- 5 if numberpeople < 2 then extracost = 2 * extrapeople * numbergames
- 6 charge = extracost
- 7 if numbergames > 1 then charge = charge * 0.1
- 8 print charge

There are three errors in the program. Locate these errors and suggest a correct piece of coding. [6]

error

line 5: numberpeople < 2 is incorrect correction: numberpeople > 2

error
 line 6: the formula/charge = extracost is incorrect
 correction:
 charge = extracost + charge

error
 line 7: discount calculation/charge = charge * 0.1 is incorrect, correction:
 charge = charge * 0.9

Oct/Nov 2010. P11

Compiled By: Naqash Sachwani

9 The following algorithm inputs 20 numbers and outputs how many numbers were positive (> 0) and how many numbers were negative (< 0).

- 1 negative = 1
- 2 positive = 1
- 3 for count = 1 to 20 do
- 4 input number
- 5 if number < 0 then negative = negative + 1</p>
- 6 if number > 0 then positive = positive + 1
 7 pount = pount + 1
- 7 count = count + 1
 8 print negative, positive
- 9 next count

There are three different errors in this algorithm.

Locate each error and give the reason why you think it is an error. [6]

- line 1/negative=1 and/or line 2/positive=1
- negative and/or positive should be set to zero
- line 7/count=count+1
- don't need a count within a for to next loop
- replace loop with a repeat...until loop
- line 8/print negative, positive or line 9/next count
- outputs should come after the next count statement

17 A school is doing a check on the heights and weights of all its students. The school has 1000 students. Write an algorithm, using pseudocode or a flowchart, which

- inputs the height and weight of all 1000 students
- outputs the average (mean) height and weight
- includes any necessary error traps for the input of height and weight [5]

total1 = 0: total2 = 0

for x = 1 to 1000

input height, weight

if height > 2 or height < 0 then print "error": input height

if weight > 130 or weight < 0 then print "error": input weight

else total1 = total1 + height: total2 = total2 + weight

next x

average1 = total1/1000

average2 = total2/1000

print average1, average2

Oct/Nov 2010. P13

17 (a) Write an algorithm, using pseudocode or a flowchart, which

- inputs a set of positive numbers (which end with -1)
- outputs the average (mean) value of the input numbers
- outputs the value of the largest (highest) number input [4]

(b)Write an algorithm, using pseudocode or a flowchart, which

- inputs a whole number (which is > 0)
- calculates the number of digits in the number
- outputs the number of digits and the original number (E.g. 147 would give an output of 3, 147) [4]

```
(a) highest = -100; total = 0: count = 0
input number
while number <> -1 do
    total = total + number
    count = count + 1
    if number > highest then highest = number
    input number
endwhile
average = total/count
print average, highest
```

```
(b) d = 0
```

```
input number
t = number
repeat
    t = t/10
    d = d + 1
until t < 1
print number, d
(** NOTE: there are other ways of finding number of digits e.g.
    if number > 0 then d = 1
        else if number > 9 then d = 2
        .....
else if number > 999999 then d = 7 etc.)
```

If no loop then 0 for loop and 0 for output

May/June 2011. P11

17 Daniel lives in Italy and travels to Mexico, India and New Zealand. The times differences are:

Hours	Minutes 1
-7	0
+4	+30
+11	0
	<u>Hours</u> -7 +4 +11

Thus, if it is 10:15 in Italy it will be 14:45 in India.

(a)Write an algorithm, using pseudocode or otherwise, which:

- Inputs the name of the country
- Inputs the time in Italy in hours (H) and minutes (M)
- Calculates the time in the country input using the data from the table
- Outputs the country and the time in hours and minutes [4]

(b) Describe, with examples, two sets of test data you would use to test your algorithm. [2]

```
(a) input name$
input H, M
if name$ = "Mexico" then H = H - 7
else if name$ = "India" then H = H + 4: M = M + 30
else if name$ = "New Zealand" then H = H + 11
else print "error"
print H, M
(b) Normal hours: (hours which do not change the day) e.g. 8
```

(b) Normal hours: (hours which do not change the day) e.g. 8 hours which change the day (e.g., 13 + country = New Zealand) Normal minutes (which do not change the hour) eg.25 minutes which change the hour (e.g. 40 + country=India)

May/June 2011. P12

Computer Science 2210 Compiled By: Nagash Sachwani 17 A school has 1800 students. The start date and leaving date for each student is stored on file. Dates are in the format YYMMDD (e.g. a student starting on 10th September 2007 and leaving on 4th August 2012 has the data 070910 and 120804 on file). (a)Write an algorithm, using pseudocode or otherwise, which inputs Student ID for all 1800 students inputs the start date and leaving date for each student carries out a check to ensure the second date is later • if error, increments error counter • outputs the number of errors [5] (b) Describe, with examples, TWO sets of test data you would use to test your algorithm. [2] (a) total = 0 (b) normal data that will be accepted: for x = 1 to 1800 e.g. 110906 and 220710 or 060911 and 100722 input student id input start date, leaving date abnormal data that should be rejected: if leaving_date <= start_date then total = total + 1 e.g. 150911 and 201009 or 110915 and 091020 next x print total negative numbers that should be rejected: e.g. -110209 or -090211 month/day/year out of range that should be rejected: e.g. 352210 or 102235 use of text that should be rejected: e.g. September 15, 2010 or 15th September 2010 Oct/Nov 2011. P11

- 17 (a) Write an algorithm, using pseudocode or flowchart only, which:
- inputs three numbers
- outputs the largest of the three numbers
- (b) Write an algorithm, using pseudocode or flowchart only, which:
- inputs 1000 numbers
- outputs how many of these numbers were whole numbers (integers)
- (You may use INT(X) in your answer e.g. Y = INT(3.8) gives the value Y = 3)

(a) input a, b, c if a > b and a > c then print a else if b > c then print b	(b) for x = 1 to 1000 input number difference = INT(number) – number
else print c	if difference = 0 then total = total + 1 next x
	print total
	(NOTE: alternative to lines 3 and 4:
	if INT(number) = number then total = total + 1

Oct/Nov 2011. P13

16 The weather conditions in a town are being monitored over a year (365 days). The values recorded per day are weather type and temperature (e.g. CLOUDY, 25). Write an algorithm, using pseudocode or flowchart only, which:

- inputs the weather type and temperature for each day
- outputs the number of days that were CLOUDY, RAINING, SUNNY or FOGGY
- outputs the highest recorded temperature for the year
- outputs the lowest recorded temperature for the year

```
c = 0: r = 0: s = 0: f = 0

high = 0 (or a negative number)

low = 1000

for x = 1 to 365

input weather, temp

if weather = "CLOUDY" then c = c + 1

else if weather = "RAINING" then r = r + 1

else if weather = "SUNNY" then s = s + 1

else if weather = "FOGGY" then f = f + 1

endif

if temp > high then high = temp

if temp < low then low = temp

next x

print c, r, s, f, high, low
```

May/June 2012. P12

15 An estate agent advertises houses for sale. The customer enquiries for a 7-day working week are entered weekly into a computer. Write an algorithm, using pseudocode or a program flowchart only, which:

• inputs the number of customer enquiries each day,

• inputs the house price each customer enquiries about,

• outputs how many customers enquired each day about houses costing less than \$100 000,

• outputs the percentage of all enquiries made during the week about houses costing more than \$500 000.

sample program:

```
total2 = 0: totalenquiries = 0

for day = 1 to 7

input enquiries

total1 = 0

totalenquiries = totalenquiries + enquiries

for i = 1 to enquiries

input cust_enquiry

if cust_enquiry < 100000 then total1 = total1 + 1

if cust_enquiry > 500000 then total2 = total2 + 1

next i

print total1

next day

percent = (total2/totalenquiries) * 100

print percent
```

Oct/Nov 2012. P12

17 (a) Write an algorithm, using pseudocode or a program flowchart only, that:

- inputs a series of positive numbers (-1 is used to terminate the input),
- outputs how many numbers were less than 1000 and
- outputs how many numbers were greater than 1000. [4]

(b)Write an algorithm, using pseudocode or a program flowchart only, that

- inputs fifty numbers each as 4 separate digits, for example: 1 5 4 1
- outputs the percentage of numbers that were palindromes.

(note: a palindrome reads the same way backwards or forwards. For example, 1331 is a palindrome but 1541 is not).

Use separate variables to store the separate digits of a number (for example D1, D2, D3, D4). [4]

<pre>(a) x = 0: y = 0 input number while number <> -1 do if number > 1000 then x = x + 1 else if number < 1000 then y = y + 1 input number endwhile print x, y</pre>	<pre>(b) T = 0 for N = 1 to 50 read D1, D2, D3, D4 if D1 = D4 and D2 = D3 then T = T+1 next N percent = T * 2 print percent</pre>
--	---

Oct/Nov 2012. P13

16 A small café sells five types of item:

bun 0.50 dollars coffee 1.20 dollars cake 1.50 dollars sandwich 2.10 dollars dessert 4.00 dollars

Write an algorithm, using pseudocode or a program flowchart only, which

- inputs every item sold during the day,
- uses an item called "end" to finish the day's input,
- adds up the daily amount taken for each type of item,
- outputs the total takings (for all items added together) at the end of the day,
- outputs the type of item that had the highest takings at the end of the day. [4]

```
x = 0: tbun = 0: tcoffee = 0: tcake = 0: tsand = 0: tdessert =0
repeat
   input item
   if item = "bun" then tbun = tbun + 0.5
   else if item = "coffee" then tcoffee = tcoffee + 1.20
   else if item = "cake" then tcake = tcake + 1.50
   else if item = "sandwich" then tsand = tsand + 2.10
   else if item = "dessert" then tdessert = tdessert + 4.00
   else print "error"
until item = "end"
if thun > x then x = thun
if tcoffee > x then x = tcoffee
if tcake > x then x = tcake
if tsand > x then x = tsand
if tdessert > x then x = tdessert
total = tbun + tcoffee + tcake + tsand + tdessert
print total, x
 ------
```

May/June 2013. P11

16 Name two different types of loop structure in a typical programming language. Give an example of how ten numbers could be input using the named loop. [6]

16 A small shop uses barcodes which represent 5 digits. The last digit is used as a check digit. For example:

a b c d e 0 1 2 3 4

The check digit (e) is found by:

- multiplying the first and third digits (i.e. a and c) by 3
- multiplying the second and fourth digits (i.e. b and d) by 2
- adding these four results together to give a total
- dividing this total by 10
- remainder is check digit (e)

Write an algorithm, using pseudocode or flowchart only, which

- inputs 100 five-digit barcodes in the form a, b, c, d, e
- re-calculates the check digit for each number and checks whether the input check digit(e) is correct
- outputs the number of barcodes which were entered correctly [5] match = 0

```
1 mark

for number = 1 to 100

input a, b, c, d, e

total = (a * 3) + (c * 3) + (b * 2) + (d * 2)

repeat

total = total – 10

until total < 10

if total = e then match = match + 1

next number

print match
```

May/June 2013. P12

17 A country has four mobile phone network operators. Each mobile phone number has eight digits. The first three digits identify the network operator:

444 Yodafone 555 N2 network 666 Kofee mobile 777 Satsuma mobile

Write an algorithm, using pseudocode or flowchart only, which reads 50 000 eight-digit mobile phone calls made during the day and outputs the number of calls made on each of the four networks.

```
Y = 0: N = 0: K = 0: S = 0
```

for count = 1 to 50 000

input number

X = number/100 000 000

if X > 0.7 then S = S + 1

else if X > 0.6 then K = K + 1

else if X > 0.5 then N = N + 1

```
else if X > 0.4 then Y = Y + 1
```

else print "error in number"

next count

print Y, N, K, S

Oct/Nov 2013. P13

10 (a) The following pseudocode was written to input 1000 dates.

1 count = 1
2 repeat
3 input day, month, year
4 count = count + 1
5 until count = 1000

(i) Describe why the loop only inputs 999 dates instead of 1000. [1]

(ii) What needs to be changed or added to the above code to make sure 1000 dates are input? [1]

(b) Errors in code can be found using test data.

Name three different types of test data. Using month from the pseudocode above, give an example of each type of test data. [6]

- (a) (i) value of count starts at 1 so only 999 iterations
 value of count reaches 1000, but before 1000th input
 - value of count reaches 1000, but before 10
 - (ii) line 1 should read count = 0
 - line 5 should read count = 1001 (or count >1000)
 change to appropriate loop structure
- (b) 1 mark for naming data type + 1 mark for example related to month
 - normal/valid (test data)
 - any value in given range (1 to 12) e.g. 4
 - abnormal/invalid (test data)
 - any value which is outside the range/any value not acceptable
 - i.e. letters, negative numbers, values > 12 e.g. adfrk, -20, 36
 - extreme/boundary (test data)
 - data which is on the boundaries/edges of the acceptable range
 - i.e. 1 or 12 for extreme; 0, 1, 12 or 13 for boundary
 - Month names, instead of values, are acceptable e.g. April

15 5000 numbers are being input which should have either 1 digit (e.g. 5), 2 digits (e.g. 36), 3digits (e.g. 149) or 4 digits (e.g. 8567). Write an algorithm, using pseudocode or flowchart only, which

• inputs 5000 numbers

• outputs how many numbers had 1 digit, 2 digits, 3 digits and 4 digits

• outputs the % of numbers input which were outside the range [6]

```
single = 0: two = 0: three = 0: four = 0: error = 0
for x = 1 to 5000
input number
if number > 999 and number < 10000 then four = four + 1
else if number > 99 then three = three + 1
else if number > 9 then two = two + 1
else if number > 0 then single = single + 1
else error = error + 1
next x
```

percent = error/50

print single, two, three, four, percent

Oct/Nov 2013. P12

16 (a) A greenhouse is being monitored by a computer using 2 sensors. SENSOR1 measures the temperature and SENSOR2 measures oxygen levels. If the temperature exceeds 45°C or oxygen levels fall below 0.19, then an error message is output by the computer.

- Write an algorithm, using pseudocode or flowchart only, which
- inputs both sensor readings
- checks the sensor input values and outputs a warning message if either are out of range
- continues monitoring until the <ESCAPE> key is pressed

Compiled By: Nagash Sachwani

(You may assume that READ SENSORn will take a reading from SENSORn and that READ KEY inputs a key press from the keyboard). [5]

(a) repeat

```
read sensor1
    read sensor2
        if sensor1 > 45 then print "warning"
        if sensor2 < 0.19 then print "warning"
    read key
until key = ESCAPE
```

(b) DAC

need to convert <u>computer output</u> to analogue values

- to allow it to operate motors, actuators,
- to open/close windows, switch heaters on/off etc.
- devices may not understand/respond to digital signals

May/June 2014 P12

18 A school has 1500 students. It is conducting a survey on their music preferences. Each student uses a computer and inputs their name and then chooses one of 5 options:

- rock (input value 1)
- soul (input value 2)
- pop (input value 3)
- jazz (input value 4)
- classical (input value 5)
- Write an algorithm, using pseudocode or a flowchart, which:
- inputs the choice of all 1500 students (values 1 to 5)
- outputs all the names of the students who chose classical music
- outputs the percentage who chose each option

rock = 0: soul = 0: pop = 0: jazz = 0: classical = 0

```
for student = 1 to 1500
```

next student percent1 = rock/15 percent2 = soul/15 percent3 = pop/15percent4 = jazz/15 percent5 = classical/15

```
input choice, pupil name
                                                     2: soul = soul + 1
    if choice = 1 then rock = rock + 1
                                                     3: pop = pop + 1
    if choice = 2 then soul = soul + 1
                                                     4: jazz = jazz + 1
    if choice = 3 then pop = pop + 1
    if choice = 4 then jazz = jazz + 1
                                                     output pupil_name
    if choice = 5 then classical = classical + 1
                                                     endcase)
    if choice = 5 then output pupil name
```

(sample pseudocode showing a possible case ... of construct: (alternative to rows 4 to 9 in above algorithm) case of choice:

```
1: rock = rock + 1
5: classical = classical + 1
```

- 5 The following algorithm should:
- input ten numbers
- output the largest number input
- output the average value of the input data

output percent1, percent2, percent3, percent4, percent5

Comp	uter Science 2210	Complied by
10	largest = 0	
20	sum = 0	
30	for x = 1 to 10	
40	input x	
50	if x > largest then x = largest	
60	output largest	
70	sum = sum + x	
80	next x	
90	average = sum * 10	
100	output average	
There a	are four errors in this algorithm.	
Locate error:	these errors and suggest a correction. line 40: input x; using same input value as loop variable will cause p 30: for x = 1 to 10	problems or line
correcti number	ion: change loop variable e.g. for count = 1 to 10 or change input var	iable e.g. input
error: correcti	line 50: formula is reversed ion: then largest = x (or largest = number)	
error: correcti	line 60: output shouldn't be inside the loop ion: 100 output average, largest	

May/June 2014. P11

correction: average = sum/10

error:

15 A survey is being carried out which involves reading and recording sound levels near a busy road junction. Once all the data are collected, they are input manually into a computer. A sound level of 0 decibels (0 dB) is input to indicate the end of the data. Write an algorithm, using pseudocode or a flowchart, which:

- inputs all the sound levels
- after a sound level of 0 is input, outputs the following:

line 90: incorrect formula

- average sound level
- highest recorded sound level.

```
total = 0: highest = 0: count = 0
```

input sound

```
while sound > 0 do
    total = total + sound
    if sound > highest then highest = sound
    count = count + 1
    input sound
```

endwhile

average = total/count

print average, highest _____

Oct/Nov 2014. P12

Question 6:

The following section of a pseudocode algorithm should:

- input 500 numbers
- generate a ratio called k
- output each value of k

output how many numbers were larger than 10

```
10 total = 1
20 FOR x = 1 TO 500
30 IF number < 10 THEN total = total + 1
40 k = x / number
50 x = x + 1
60 OUTPUT k
70 NEXT x
80 OUTPUT x
(a)There are five errors in the above code.
Locate these errors and suggest a correction. [5]
```

(b)The corrected algorithm was converted to a computer program and run. However, after several numbers were input, the program stopped and an error message was generated, showing that there was a further error at line (k = x / number).

State what could cause this error to occur. Suggest a change to line 40 to overcome this problem. [2]

(a)	error: correction:	line 10: total = 1 totals should be set to zero; total = 0
error:line 30: number < 10		line 30: number < 10 check should be made if number > 10; number > 10
	error: correction:	no input inside loop input number
	error: correction:	line 50: $x = x + 1$ for to loops don't need a counter; remove line 50 altogether
	error: correction:	line 80: output x output should be total value; output total

(b) division by zero error (or similar description of error produced when dividing by 0) add an error trap after input of number e.g. 40 if number = 0 then k = 0 else k = x/number

Question 16:

A school has 3000 students sitting final examinations.

Each student sits eight examinations.

Write an algorithm, using pseudocode or a flowchart, which:

- inputs the marks for all 8 examinations for each student
- outputs for each student the average mark for their 8 examinations

```
    outputs the highest mark overall
highest = -1
for student = 1 to 3000
total = 0
for exam = 1 to 8
input mark
total = total + mark
if mark > highest then highest = mark
next
average = total/8
output average
next
output highest
```

JUNE 2015 (VARIANT 1)

2 Read this section of program code that should input 10 positive numbers and then output the smallest number input. 1 Small = 0

- 2 Counter = 0
- **3 REPEAT**
- 4 INPUT Num
- 5 IF Num < Small THEN Num = Small
- 6 Counter = Counter + 1
- 7 PRINT Small
- 8 UNTIL Counter < 10
- There are four errors in this code.

Locate these errors and suggest a corrected piece of code for each error.

Line 1: Small = 999
 Line 5: IF Num < Small THEN Small = Num
 Line 7: Line 7 should come after the end of the Repeat Loop
 Line 8: UNTIL COUNTER = 10

6 Identify three different loop structures that you can use when writing pseudocode. [3]

1. FOR ... TO ... NEXT 2. WHILE ... DO ... ENDWHILE 3. REPEAT ... UNTIL

JUNE 2015 (VARIANT 2)

2 Read this section of program code that should input 30 positive numbers and then output the largest number input.

1 Large = 9999 2 Counter = 0 3 WHILE Counter > 30 4 DO 5 INPUT Num 6 IF Num < Large THEN Large = Num 7 Counter = Counter - 1 8 ENDWHILE 9 PRINT Large There are four errors in this code. Locate these errors and suggest a corrected piece of code for each error.

Line 1: Large = 0
 Line 3: WHILE Counter < 30
 Line 6: IF Num > Large THEN Large = Num
 Line 7: Counter = Counter + 1

4 Four programming concepts and four examples of programming code are shown below. Draw a line to link each programming concept to the correct example of programming code.

[4]

Programming

concept

Example of programming code Sum = Sum + Value[n]

5 (a) Write an algorithm, using pseudocode and a FOR ... TO ... NEXT loop structure, to input 1000 numbers into an array. [2]

(b) Rewrite your algorithm using another loop structure. [4]

```
(a) 1 mark for FOR ... TO ... NEXT 1 mark for INPUT
   FOR Count < 1 TO 1000
     INPUT A[Count]
   NEXT (Count)
                              Example2
(b) Example1
                                 Count ← 0
      Count 🗲 1
                                 WHILE Count < 1000
      REPEAT
                                   DO
        INPUT A[Count]
                                   Count + 1
        Count 🗲 Count + 1
                                   INPUT A[Count]
      UNTIL Count > 1000
                                 ENDWHILE
```

NOVEMBER 2015 (VARIANT 1)

2 Read this section of program code that should input 50 numbers and then output the average of the positive numbers only.

1 Total = 0 2 PosCount = 0 3 FOR Counter = 1 TO 50 4 INPUT Num 5 IF Num < 0 THEN Total = Total + Num 6 IF Num > 0 THEN Counter = Counter + 1 7 Average = Total/PosCount 8 NEXT Counter 9 PRINT Num There are four errors in this code. Compiled By: Naqash Sachwani

Locate these errors and suggest code corrections to remove each error.

1. Error: Line 5

Correction: IF NUM > 0 THEN Total = Total + Num

2. Error: Line 6

Correction: IF NUM > 0 THEN PosCount = PosCount + 1

3. Error: Line 7

Correction: This line should come outside and after the FOR Loop. This can be achieved by interchanging line 7 and line 8.

4. Error: Line 9

Correction: Print Average

3 (a) This pseudocode inputs an integer. The predefined function DIV gives the value of the division, e.g. Y ← 10 DIV 3 gives the value Y = 3. The predefined function MOD gives the value of the remainder, e.g. Y ← 10 MOD 3 gives the value Y = 1.

```
INPUT X
WHILE X > 15
 DO
  T1 ← X DIV 16
 T2 ← X MOD 16
  CASE T2 OF
    10:OUTPUT A
   11:OUTPUT B
   12:OUTPUT C
   13:OUTPUT D
   14:OUTPUT E
   15:OUTPUT F
   OTHERWISE OUTPUT T2
 ENDCASE
 х ← т1
ENDWHILE
CASE X OF
  10:OUTPUT A
  11:OUTPUT B
 12:OUTPUT C
 13:OUTPUT D
  14:OUTPUT E
  15:OUTPUT F
  OTHERWISE OUTPUT X
ENDCASE
```

Complete a trace table for each of the two input values 37 and 191.

Trace table for input value 37

х	T1	T2	OUTPUT

Trace table for input value 191

x	T1	T2	OUTPUT

(b) State the purpose of the pseudocode in part (a).

(a) Number 1 Trace Table

x	T1	Т2	Output
37	2	5	5
2			2
÷	(1 mark) →	← (1 mark) →

Number 2 Trace Table

x	T1	T2	Output
191	11	15	F
11			В
÷	(1 mark) →	← (1 mark) →

(b) – convert a denary number to hexadecimal
 and output it in reverse order

NOVEMBER 2015 (VARIANT 2)

2 Read this section of program code that should input 50 numbers and then output the average. 1 Total = 0

- 2 For Counter = 1 TO 50
- 3 INPUT Num
- 4 Total = Total + 1
- 5 Counter = Counter + 1
- 6 Average = Total/Counter
- 7 NEXT Counter

8 PRINT Average

There are four errors in this code.

Locate these errors and suggest code corrections to remove each error. [4]

1. Error: Line 4

Correction: Total = Total + Num

2. Error: Line 5

Correction: Delete this line as the FOR Loop will automatically increment the value of the 'counter' variable.

3. Error: Line 6 Correction: Average = Total/50

4. Error: Line 6

Correction: This line should be outside and after the FOR Loop. This can be achieved by swapping Line 6 and Line 7.

5 Identify two different conditional statements that you can use when writing pseudocode. [2]

```
- IF (... THEN ... ELSE ... ENDIF)
- CASE (... OF ... OTHERWISE ... ENDCASE)
```

JUNE 2016

2.Read this section of program code that inputs 10 positive numbers and then outputs the total.

Compiled By: Naqash Sachwani

Computer Science 2210

- 1 Total = 0
- 2 Counter = 0
- 3 REPEAT
- 4 INPUT Num
- 5 Total = Total + Num
- 6 PRINT Total
- 7 Counter = Counter + 1
- 8 UNTIL Counter = 10
- This code works, but it is inefficient.
- (i) Suggest three improvements that could be made. [3]
- (ii) Rewrite the program code with your improvements. [3]
- (i)1. Use a FOR...NEXT Loop instead of a REPEAT...UNTIL Loop
 - 2. Move Line 6 (PRINT Total) after the end of the loop.
 - 3. Add statements to check that only Positive Numbers are input.
- (ii) 1 Total = 0
 2 FOR Counter = 1 To 10
 3 REPEAT
 4 INPUT Num
 5 UNTIL Num >0
 6 Total = Total + Num
 7 NEXT Counter
 8 PRINT Total

4 Four statement types and four examples are shown below.

Draw a line to connect each statement type to the correct example.

Solution:

Statement type

example

6 Identify two different selection statements that you can use when writing pseudocode. [2]

- IF (... THEN ... ELSE ... ENDIF)

- CASE (... OF ... OTHERWISE ... ENDCASE)

NOVEMBER 2016

2 Read this section of program code that inputs positive numbers, discards any negative numbers and then outputs the average. An input of zero ends the process.

```
Total = 0
1
2
  Counter = 100
3 REPEAT
4
  REPEAT
5
    INPUT Num
6 UNTIL Num < 0
   Total = Total + 1
7
  Counter = Counter + Num
8
9 UNTIL Num = 0
10 Average = Total / (Counter -1)
11 Print Average
```

There are four errors in this code.

Locate these errors and suggest a correction to remove each error.

```
- line 2 or Counter = 100
- Counter = 0
- line 6 or UNTIL Num < 0
- UNTIL Num >= 0
- line 7 or Total = Total + 1
```

- Total = Total + Num

- line 8 or Counter = Counter + Num
- Counter = Counter + 1

4 IF ... THEN ... ELSE ... ENDIF and CASE ... OF ... OTHERWISE ... ENDCASE are two different conditional statements that you can use when writing pseudocode.

Explain, using examples, why you would choose to use each conditional statement. Example 1 Reason for choice Example 2

Reason for choice

```
IF X > 0 AND X <= 10
THEN PRINT 'In Range'
ELSE PRINT 'Out of Range'
ENDIF
```

 – e.g. checking a condition that may be complex//uses relational operators// checking for a range of values// only 2 options

```
CASE X OF

1 : PRINT 'Option 1'

2 : PRINT 'Option 2'

3 : PRINT 'Option 3'

OTHERWISE PRINT 'Incorrect choice'

ENDCASE

- e.g. checking for discrete/large number/more than 2 of values
```

[6]

JUNE 2017 (VARIANT 1)

Compiled By: Naqash Sachwani

2 This section of program code asks for 50 numbers to be entered. The total and average of the numbers are calculated.

```
Total = 0
1
2
  Counter = 50
3
  PRINT 'When prompted, enter 50 numbers, one at a time'
4
  REPEAT
5
    PRINT 'Enter a number'
6
    INPUT Number
7
    Total + Number = Total
8
    Number = Number + 1
9
  UNTIL Counter = 50
10 Average = Number * Counter
11 PRINT 'The average of the numbers you entered is ', Average
```

There are four errors in this code.

State the line number for each error and write the correct code for that line.

```
Line 2 Correct code Counter = 0

Line 7 Correct code Total = Total + Number // Number + Total

Line 8 Correct code Counter = Counter + 1 // 1 + Counter

Line 10 Correct code Average = Total / Counter //

Average = Total / 50
```

5 (a) Describe the purpose of each statement in this algorithm. [2]

```
FOR I ← 1 TO 300
INPUT Name[I]
NEXT I
```

(b) Identify, using pseudocode, another loop structure that the algorithm in part (a) could have used. [1](c) Write an algorithm, using pseudocode, to input a number between 0 and 100 inclusive. The algorithm should prompt for the input and output an error message if the number is outside this range. [3]

(a)	 Any two from: Loop with 300 repetitions (starting at 1) / Loops from 1 to 300 Values input/stored (in consecutive/different locations) in an array (at position I) Increases the loop counter/I value by 1 (and returns to the start of the loop) 				
(b)	REPEAT (UNTIL) WHILE (DO ENDWHILE)				
(c)	OUTPUT "Enter a number between 0 and 100 " INPUT Number IF Number < 0 OR Number > 100 THEN OUTPUT "The number you have entered is outside the specified range"				

JUNE 2017 (VARIANT 2)

Question 2

(a) Write an algorithm to input three different numbers, and then output the largest number. Use either pseudocode or a flowchart. [4]

(b) Give two sets of test data to use with your algorithm in part (a) and explain why you chose each set. Test data set 1

Reason

Test data set 2

Reason

[4]

(a)	INPUT Num1, Num2, Num3							
	IF (Num1 > Num2)	AND (Num1 >	Num3)	THEN	PRINT	Num1		
	ENDIF							
	IF (Num2 > Num1)	AND (Num2 >	Num3)	THEN	PRINT	Num2		
	ENDIF							
	IF (Num3 > Num1)	AND (Num3 >	Num2)	THEN	PRINT	Num3		
	ENDIF OF INPUT Num1 Big ← Num1 INPUT Num2, Num3 IF Num2 > Big THEN Big ← Num2 ENDIF IF Num3 > Big THEN Big ← Num3 ENDIF							
	PRINT Big							
(b)	Test data set 1: 30, 29, 28							
` ´	Reason: first number is the largest							
	in or namber to the largest							
	Test data set 2:	X. V. Z						
	Reason:	abnormal data, should be rejected						
				-				

4 An algorithm has been written in pseudocode to input 100 numbers and print out the sum. A REPEAT ... UNTIL loop has been used.

```
Count ← 0

Sum ← 0

REPEAT

INPUT Number

Sum ← Sum + Number

Count ← Count + 1

UNTIL Count > 100

PRINT Sum
```

(a) Find the error in the pseudocode and suggest a correction. [2]

(b) Rewrite the correct algorithm using a more suitable loop structure. [3]

```
(a)Error: UNTIL Count > 100
Correction: UNTIL Count = 100
(b)SUM = 0
FOR Count = 1 TO 100
INPUT Number
Sum = Sum + Number
NEXT Count
PRINT Count
```

NOVEMBER 2017 (VARIANT 2)

2 Write an algorithm using either pseudocode or a flowchart, to:

- input a positive integer
- use this value to set up how many other numbers are to be input
- input these numbers
- calculate and output the total and the average of these numbers. [6]

```
INPUT NumberCount
Total ← 0
FOR Count ← 1 TO NumberCount
INPUT Number
Total ← Total + Number
NEXT
Average ← Total/NumberCount
PRINT Total, Average
```
Compiled By: Naqash Sachwani

4 IF ... THEN ... ELSE ... ENDIF is one type of conditional statement used when writing pseudocode.

Identify and describe another type of conditional statement that you could use when writing pseudocode. Give a reason why you would use this type of conditional statement.

Conditional statement Description Reason

Reason

Identification:

CASE OF ... OTHERWISE ... (ENDCASE) OF ... OF ... (OTHERWISE) ... ENDCASE

Description:

- a statement that allows for multiple selections // not any of the above

Reason:

- to simplify pseudocode/ make pseudocode more understandable etc.

NOVEMBER 2017 (VARIANT 1)

2 This section of program code asks for 80 numbers between 100 and 1000 to be entered. It checks that the numbers are in the correct range, and stores them in an array. It counts how many of the numbers are larger than 500 and then outputs the result when the program is finished.

```
1 Count = 0
2 FOR Index = 1 TO 80
  INPUT 'Enter a number between 100 and 1000', Number
3
  WHILE Number = 99 AND Number = 1001
4
5
    INPUT 'This is incorrect, please try again', Number
6
  ENDWHILE
7
  Num[80] = Number
   IF Number > 500 THEN Count = Count + 1
8
9 UNTIL Index = 80
10 PRINT Index
11 PRINT ' numbers were larger than 500'
```

There are four lines of code that contain errors. State the line number for each error and write the correct code for that line.

[4]

```
Line 4 correct line WHILE Number <= 99 OR Number > 1000
Line 7 correct line Num[Index] = Number
Line 9 correct line NEXT (Index)
Line 10 correct line PRINT Count
```

4 (a) Four pseudocode descriptions and five pseudocode statements are shown. Draw one line to link each pseudocode description to the correct pseudocode statement. Not all pseudocode statements will be used.

Pseudocode description

(b) Write an algorithm in pseudocode, using a single loop, to print 50 names that have been stored in an array. [3]

JUNE 2018 (VARIANT 1)

2 (a) Write an algorithm to input 1000 numbers. Count how many numbers are positive and how many numbers are zero. Then output the results. Use either pseudocode or a flowchart. [6]

(b) Give one change you could make to your algorithm to ensure initial testing is more manageable. [1]

```
(a) zero ← 0
posCount ← 0
FOR count ← 1 TO 1000
INPUT number
IF number > 0
THEN posCount ← posCount + 1
ENDIF
IF number = 0
THEN zero ← zero + 1
ENDIF
NEXT
OUTPUT posCount, " positive numbers"
OUTPUT zero, " zeros"
```

(b) Reduce the number of iterations to a manageable amount // Simulate the input (e.g. random generation)
 3 The global trade item number (GTIN-8) barcode has seven digits and a check digit. This pseudocode algorithm inputs seven digits and calculates the eighth digit, then outputs the GTIN-8.
 DIV(X,Y), finds the number of divides in division for example DIV(23,10) is 2.

MOD(X,Y), finds the remainder in division for example MOD(23,10) is 3.

```
FOR Count ← 1 TO 7
	INPUT Number
	Digit(Count) ← Number
NEXT
Sum ← (Digit(1)+Digit(3)+Digit(5)+Digit(7))*3+Digit(2)+Digit(4)+Digit(6)
IF MOD(Sum,10) <> 0
	THEN Digit(8) ← DIV(Sum,10)*10 + 10 - Sum
	ELSE Digit(8) ← 0
ENDIF
OUTPUT "GTIN-8"
FOR Count ← 1 TO 8
	OUTPUT Digit(Count)
NEXT
```

(a) Complete the trace table for the input data: 5, 7, 0, 1, 2, 3, 4

Digit(1)	Digit(2)	Digit(3)	Digit(4)	Digit(5)	Digit(6)	Digit(7)	Digit(8)	Sum	OUTPUT

Complete the trace table for the input data: 4, 3, 1, 0, 2, 3, 1

Digit(1)	Digit(2)	Digit(3)	Digit(4)	Digit(5)	Digit(6)	Digit(7)	Digit(8)	Sum	OUTPUT
									[5]

(b) Explain how you would change the algorithm to input eight digits (seven digits and the check digit) and output if the check digit entered is correct or not. [3]

1	-	۱
٠.	a	,

Digit(1)	Digit(2)	Digit(3)	Digit(4)	Digit(5)	Digit(6)	Digit(7)	Digit(8)	Sum	OUTPUT
5	7	0	1	2	3	4	6	44	GTIN-8
									57012346

Compiled By: Naqash Sachwani

Digit(1)	Digit(2)	Digit(3)	Digit(4)	Digit(5)	Digit(6)	Digit(7)	Digit(8)	Sum	OUTPUT
4	3	1	0	2	3	1	0	30	GTIN-8
									43102310

One mark for data entry – both sets of digits 1–7 One mark for both Digit(8) One mark for each Sum (max Two) One mark for both OUTPUT

(b) Any three from

- 1 Change first loop to 8 iterations
- 2 Check that the input Digit (8) is equal to the calculated Digit (8)...
- 3 ... if equal output check digit correct
- 4 ... otherwise output check digit incorrect

Or

- 1 Change first loop to 8 iterations
- 2 Put all 8 digits through the algorithm to calculate sum ...
- 3 ... if MOD (Sum, 10) is equal to zero, check digit correct
- 4 ... otherwise output check digit incorrect

JUNE 2018 (VARIENT 2):

3 This pseudocode algorithm inputs two non-zero numbers and a sign, and then performs the calculation shown by the sign. An input of zero for the first number terminates the process.

```
INPUT Number1, Number2, Sign
WHILE Number1 <> 0
IF Sign = '+' THEN Answer ← Number1 + Number2 ENDIF
IF Sign = '-' THEN Answer ← Number1 - Number2 ENDIF
IF Sign = '*' THEN Answer ← Number1 * Number2 ENDIF
IF Sign <> '/' THEN Answer ← Number1 / Number2 ENDIF
IF Sign <> '/' AND Sign <> '*' AND Sign <> '-' AND Sign <> '+'
THEN Answer ← 0
ENDIF
IF Answer <> 0 THEN OUTPUT Answer ENDIF
INPUT Number1, Number2, Sign
ENDWHILE
```

(a) Complete the trace table for the input data: 5, 7, +, 6, 2, -, 4, 3, *, 7, 8, ?, 0, 0, /

Number1	Number2	Sign	Answer	OUTPUT

[3]

(b) Show how you could improve the algorithm written in pseudocode by writing an alternative type of conditional statement in pseudocode. [3]

3(a)

Compiled By: Naqash Sachwani

Number1	Number2	Sign	Answer	OUTPUT
5	7	+	12	12
6	2	-	4	4
4	3	*	12	12
7	8	?	0	
0	0	/	(0)	

```
3(b) CASE Sign OF ... ENDCASE (1)
List +, -, *, / with correct assignments (1)
OTHERWISE Answer ← 0 (1)
Example
CASE Sign OF
    '+': Answer ← Number1 + Number2
    '-': Answer ← Number1 - Number2
    '*': Answer ← Number1 * Number2
    '/': Answer ← Number1 / Number2
    OTHERWISE Answer ← 0
ENDCASE
```

NOVEMBER 2018 (VARIANT 1)

3 Give an example of a pseudocode statement or statements to perform each of the following functions. A condition-controlled loop

A conditional statement

Totalling

Condition controlled loop – 1 mark for each correct answer e.g.

WHILE Number > 0 DO ... ENDWHILE // REPEAT ... UNTIL Number > 0

Conditional statement - 1 mark for each correct answer e.g.

```
IF Number = 0 THEN (... ELSE) Number \leftarrow 1 ENDIF // CASE Number OF
0: Number \leftarrow 1
(... OTHERWISE) ... (ENDCASE)
```

Totalling - 1 mark for each correct answer e.g.

 $Total \leftarrow Total + Number$

4 This is a section of program code.

```
1 Total = 100.00
2 PRINT 'Enter the height of each member of your class, one at a
time, when prompted'
3 FOR Count = 1 TO 30
4 PRINT 'Enter a height in metres'
5 INPUT Height
6 Total = Total + Height
7 PRINT Total / 30
8 Count = Count + 1
9 NEXT Count
```

(a) There are three errors in this code. State the line numbers that contain the errors and describe how to correct each error. [3]

```
(b) State the purpose of this program.
```

41

[1]

[3]

(a) 1 mark for each error identified plus suggested correction

Line 1 or Total = 100.00; correction Total = 0(.00)

Line 8 or Count = Count + 1: correction This line should be removed (not required in a FOR loop) // use of REPEAT..UNTIL or WHILE..DO..ENDWHILE

Line 7 or PRINT Total /30: correction This line should be outside the loop (or it will print each iteration)

 (b) 1 mark for correct purpose: Find/output average height

5 The algorithm allows a number to be entered. It then calculates and outputs the next number in the mathematical series.

```
Fib \leftarrow 1

Prev2 \leftarrow 0

Prev1 \leftarrow 1

INPUT Number

IF Number = 0

THEN Fib \leftarrow 0

ENDIF

WHILE Number > 2

Fib \leftarrow Prev2 + Prev1

Prev2 \leftarrow Prev1

Prev1 \leftarrow Fib

Number \leftarrow Number - 1

ENDWHILE

OUTPUT Fib
```

(a) Complete the trace table for the input data: 7

Fib	Prev2	Prev1	Number	OUTPUT

[4]

(b) Complete the trace table for the input data: 2

Fib	Prev2	Prev1	Number	OUTPUT

i(a)

Fib	Prev2	Prev1	Number	OUTPUT
1	0	1	7	
1	1	1	6	
2	1	2	5	
3	2	3	4	
5	3	5	3	
8	5	8	2	8
Fib	Prev2	Prev1	Number	OUTPUT
1	0	1	2	1

(b)

NOVEMBER 2018 (VARIANT 2)

2 (a) Write an algorithm, using pseudocode, to input three different numbers, multiply the two larger numbers together and output the result. Use the variables: Number1, Number2 and Number3 for your numbers and Answer for your result. [5]

(b)Give two sets of test data to use with your algorithm in part (a) and explain why you chose each set. [4]

[2]

[3]

(a)	REPEAT
	OUTPUT "Enter three different numbers"
	INPUT Number1, Number2, Number3
	UNTIL Number1 <> Number2 AND Number2 <> Number3 AND Number3 <> Number1
	IF Number3 < Number2 AND Number3 < Number1
	THEN Answer - Number1 * Number2
	ENDIF
	IF Number2 < Number3 AND Number2 < Number1
	THEN Answer - Number1 * Number3
	ENDIF
	IF Number1 < Number2 AND Number1 < Number3
	THEN Answer - Number2 * Number3
	ENDIF
	OUTPUT "Answer = ", Answer
(b)	There are many correct answers. E.g.:
	7,7,7
	should be rejected as numbers are equal
1	7.0.0
1	7,8,9
	normal data answer should be 72

3 Four programming concepts and four descriptions are shown. Draw a line to connect each programming concept to the most appropriate description. Description

Programming concept

4 A programmer wants to test that the readings from 2000 electricity meters are greater than 400 units and less than 900 units. The programmer uses selection and repetition statements as part of the program. Explain, using programming statements, how selection and repetition could be used in this program.

Selection

Repetition

Selection use of IF statement to check the values of the meter readings IF Reading > 400 and Reading < 900 THEN ...

Repetition use of FOR loop to check all 2000 meter readings FOR Meter = 1 TO 2000 ... NEXT

JUNE 2019 (VARIANT 1)

3 (a) Give an example of a conditional statement using pseudocode. [2](b) Describe the purpose of a conditional statement [2]

IF ٠ (a) Condition and outcome • Example answer: IFX < 0THEN PRINT "Negative" ELSE PRINT "Not negative" ENDIF OR CASE Condition and outcome ٠ Example answer: CASE X OF 1: PRINT ("ONE") 2: PRINT ("TWO") OTHERWISE PRINT ("Less than ONE or more than TWO") ENDCASE (b) To allow different routes through a program ٠ dependent on meeting certain criteria • 4 This section of program code may be used as a validation check. PRINT "Input a value between 0 and 100 inclusive" 1 2 INPUT Value 3 WHILE Value < 0 OR Value > 100 PRINT "Invalid value, try again" 4 5 INPUT Value 6 ENDWHILE 7 PRINT "Accepted: ", Value (a) Give a name for this type of validation check. (b) Describe what is happening in this validation check. (c) Complete the trace table for this program code using the test data: 200, 300, −1, 50, 60 Value OUTPUT

[1]

[3]

Range check				
 Two from: The entered number (Value) is being checked to see that it is not < 0 or not > 100 If it is, it is rejected and the user has to enter another number / an error message is displayed Otherwise the number is accepted, the word 'Accepted' is output along with the Value 				
Value	OUTPUT			
	Input a value between 0 and 100 inclusive			
200	Invalid value, try again			
300	Invalid value, try again			
-1	Invalid value, try again			
50	Accepted: 50			
	Range check Two from: The entered n <0 or not > 10 If it is, it is reje error message Otherwise the along with the Value 200 300 -1 50			

JUNE 2019 (VARIANT 2)

variable Total.

2 (a) An algorithm has been written in pseudocode to input 100 numbers, select and print the largest number and smallest number.

```
Count \leftarrow 1
INPUT Number
High ← Number
Low ← Count
REPEAT
  INPUT Number
  IF Number > High
     THEN
       High ← Number
  ENDIF
  IF Number > Low
     THEN
       Low ← Number
  ENDIF
  Count ← Count + 1
UNTIL Count > 99
PRINT "Largest Number is ", Number
PRINT "Smallest Number is ", Low
Find the four errors in the pseudocode and suggest a correction for each error.
                                                                                         [4]
(b) Show how you would change the corrected algorithm to total the numbers and print the total. Use a
```

[4]

(α) \square TOM \leftarrow Contr 20000 De TOM \leftarrow Natione	(a) 🛛	Low ·	\leftarrow Count	should be Low	←	Number
---	-------	-------	--------------------	---------------	---	--------

- Number > Low should be Number < Low</p>
- □ UNTIL Count = 99 should be UNTIL Count > 99 of UNTIL Count = 100 of UNTIL Count >= 100 // Count ← 1 should be Count ← 0
- PRINT "Largest Number is ", Number should be PRINT "Largest Number is ", High

```
(b) Count \leftarrow 1
  INPUT Number
  High ← Number
  Low + Number
  Total ← Number
  REPEAT
      INPUT Number
      Total ← Total + Number
      IF Number > High
      THEN
         High ← Number
     ENDIF
      IF Number < Low
      THEN
         Low + Number
      ENDIF
      Count \leftarrow Count + 1
  UNTIL Count > 99
  PRINT "Largest Number is ", High
  PRINT "Smallest Number is ", Low
  PRINT "Total is ", Total
```

4 For each of the four groups of statements in the table, place a tick in the correct column to show whether it is an example of Selection or Repetition.

Statements	Selection	Repetition
FOR $A \leftarrow 1$ TO 100 $B \leftarrow B + 1$ NEXT A		
CASE A OF 100: $B \leftarrow A$ 200: $C \leftarrow A$ ENDCASE		
IF A > 100 THEN B \leftarrow A ENDIF		
REPEAT $A \leftarrow B * 10$ UNTIL $A > 100$		
Statements	Selection	Repetition
Statements FOR $A \leftarrow 1$ TO 100 $B \leftarrow B + 1$ NEXT A	Selection	Repetition √
Statements FOR $A \leftarrow 1$ TO 100 $B \leftarrow B + 1$ NEXT A CASE A OF 100: $B \leftarrow A$ 200: $C \leftarrow A$ ENDCASE	Selection	Repetition ✓
Statements FOR $A \leftarrow 1$ TO 100 $B \leftarrow B + 1$ NEXT A CASE A OF 100: $B \leftarrow A$ 200: $C \leftarrow A$ ENDCASE IF $A > 100$ THEN $B \leftarrow A$ ENDIF	Selection ✓	Repetition √

[4]

Compiled By: Naqash Sachwani

Computer Science 2210 Oct/Nov 2019 (VARIANT 2)

2 An algorithm has been written in pseudocode to select a random number using the function RandInt(n), which returns a whole number between 1 and the argument n. The algorithm then allows the user to guess the number.

```
Number ← RandInt(100)
TotalTry \leftarrow 1
REPEAT
  PRINT "Enter your guess now, it must be a whole number"
  INPUT Guess
  IF TotalTry > Number
    THEN
      PRINT "Too large try again"
  ENDIF
  IF Guess > Number
    THEN
      PRINT "Too small try again"
  ENDIF
  TotalTry ← Guess + 1
UNTIL Guess <> Number
TotalTry ← TotalTry - 1
PRINT "Number of guesses ", TotalTry
```

Find the **four** errors in the pseudocode and suggest a correction to remove each error. [4]

Solution:

2	IF TotalTry > Number should be IF Guess > Number	
	IF Guess > Number should be IF Guess < Number	
	<code>TotalTry</code> \leftarrow <code>Guess</code> + 1 should be <code>TotalTry</code> \leftarrow <code>TotalTry</code> + 1	
	UNTIL Guess <> Number Should be UNTIL Guess = Number	

5 A programmer writes a program to weigh baskets of fruit in grams, keeping a total of the weight and counting the number of baskets. The total weight is stored in a variable Total and the number of baskets is stored in a variable BasketCount. Explain, including examples of programming statements, how totalling and counting could be used in this program.

Totalling

Counting[4]

Solution:

5	Tot	alling:
		Adding the weight of each basket to the total weight as each weight is entered
		Total = Total + Weight
	Cou	unting:
		Adding one to/incrementing the number of baskets as each weight is entered
		BasketCount = BasketCount + 1

Oct/Nov 2019 (VARIANT 1)

3 Name the three types of loop structure used in pseudocode.

Solution:

- FOR (... ТО ... NEXT) loop
- WHILE (... DO ... ENDWHILE) loop
- REPEAT (... UNTIL) loop

[3]

[4]

4 The following pseudocode algorithm uses nested IF statements.

```
IF Response = 1
  THEN
    x \leftarrow x + y
  ELSE
    IF Response = 2
       THEN
         x \leftarrow x - y
       ELSE
         IF Response = 3
           THEN
              x \leftarrow x * x
           ELSE
              IF Response = 4
                THEN
                   x \leftarrow x / x
                ELSE
                   OUTPUT "No response"
              ENDIF
         ENDIF
    ENDIF
```

ENDIF

- (a) Name the type of statement demonstrated by the use of IF ... THEN ... ELSE ... ENDIF [1]
- (b) Re-write the pseudocode algorithm using a CASE statement.

Solution:

4(a)	Conditional / selection statement
4(b)	<pre>Four from: MP1 CASE statement with identifier Response MP2 Correct structure used for choices MP3 correct statements used for choices MP4 OTHERWISE and correct statement MP5 Single ENDCASE included e.g. CASE OF Response // CASE Response OF 1 : X ← X + Y 2 : X ← X + Y 2 : X ← X + Y 3 : X ← X * Y 4 : X ← X / Y OTHERWISE OUTPUT "No response" ENDCASE</pre>

The algorithm performs an operation on the array named MyData 5

```
DIV means integer division, so only the whole number part of the result is returned
e.g. 7 DIV 2 returns a value of 3
```

```
First \leftarrow 0
Last \leftarrow 16
Found \leftarrow FALSE
INPUT UserIn
WHILE (First <= Last) AND (Found = FALSE) DO
  Middle ← (First + Last) DIV 2
  IF MyData[Middle] = UserIn
    THEN
      Found \leftarrow TRUE
    ELSE
      IF UserIn < MyData[Middle]
         THEN
           Last ← Middle - 1
         ELSE
           First ← Middle + 1
      ENDIF
  ENDIF
ENDWHILE
OUTPUT Found
```

Compiled By: Naqash Sachwani

 Computer Science 2210
 Compiled By: N

 This table shows the contents of the array: MyData e.g. MyData[2] stores the value 5

		MyData															
Index	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]	[10]	[11]	[12]	[13]	[14]	[15]	[16]
Value	2	3	5	6	8	10	12	13	14	16	18	20	25	27	29	34	36

(a) Complete the trace table for the input data: 10

	First	Last	UserIn	Middle	Found	OUTPUT	
							1
							[e
b)	Describe th	e function being	performed by t	he algorithm.			[

(b) Describe the function being performed by the algorithm.

Solution:

5(a)		First	Last	UserIn	Middle	Found	OUTPUT
		0	16			FALSE	
		0	16	10	8	FALSE	
		0	7	10	3	FALSE	
		4	7	10	5	TRUE	TRUE
5(b)	Two from: • Search for the value input • using an array • of sorted data						

TURTLE GRAPHICS 1993-2019

May/June 1993 P1:

Question 12:

A programming language gives instructions for moving a pen on a piece of paper.

Examples are.

- F20 Move forward 20 cm
- B30 Move backwards 30 cm
- R90 Turn right 90 degrees
- L120 Turn left 120 degrees

The following program called FLAG 1 draws the shape shown returning the pen to the starting point.

(a)Write a program, called FLAG 2, to draw the shape shown, returning the pen to the starting point. [3] FLAG 2

(b)The program below, called PATTERN 1, draws the pattern shown.

REPEAT 4 TIMES FLAG 1 R 90 ENDREPEAT

Write a program, called PATTERN 2, to draw the pattern shown below.

PATTERN 2

Solution:

a) F100 R120 F50 R60 F50 R60 B50

b) REPEAT 8 TIMES FLAG 2 R 45 END REPEAT

Oct/Nov 2000 P1

Question 10:

This set of instructions can be used to draw shapes

Forward n	Move forward n steps
Backward n	Move backward n steps
Right d	Turn clockwise d degrees
Left d	Turn anti-clockwise d degrees

The following set of instructions will produce the square below Forward 40 Right 90 Forward 40 Right 90 Forward 40 Right 90 Forward 40 Right 90 Forward 40

(a)Sketch the shape produced by this set of instuctions. Forward 30 Left 120 Forward 30 [3]

Computer Science 2210 Left 120 Forward 30 Left 120

Solution:

a)

120

- b) Repeat 4 [forward 40, Right 90]
- c) Value of x can be inserted which will provide the square with the required dimension Repeat 4 [forward x, Right 90]

May/June 2002 P1:

Question 8:

The following set of instructions can be used to control a robot, which moves heavy boxes.

Forward n	Move forward n steps
Backward n	Move backward n steps
Right d	Turn clockwise d degrees
Left d	Turn anti-clockwise d degrees
Up n	Move the robots arms up n cm
Down n	Move the robots arms down n cm

- a) Write three more instructions so that the robot will return to its original state. [3]
- b) A procedure (subroutine) called BELT exists to take one box and put it on a conveyor belt. Write an algorithm, using the procedure, to put 50 boxes on the conveyor belt. [3]

Solution:

```
(a)Down 40
Right 90
Backward 20
```

(b) Set box = 0 Set counter = 0 If box is <= 50 Input box box = box + 1 Else End

May/June 2004 P1

7 A programming language has instructions for moving a pen on a piece of paper. Examples are:

F10	Move forward 10 cm
B20	Move backwards 20 cm
R90	Turn right 90 degrees
L90	Turn left 90 degrees

Read the following set of instructions which makes the pen draw the rectangle below and study the drawing that is produced.

Write a set of instructions that would produce the following drawing:

[3] Solution: F4 L90/R270 F4 L90/R270 F2 L90/R270 one mark F2 R90/L270 one mark F2 L90/R270 F2 (any L/R, B1, B2) one mark

Oct/Nov 2006 P1

10 A robot arm is to be used to move some objects which are positioned on the grid shown. Object "X" is located at A7 and is to be moved to F7. Object "Y" is located at C6 and is to be moved to G5. The START position for the robot arm is shown. The robot arm can travel left and right along the top of the grid, and the robot arm can extend (lengthen) and retract (shorten) so that the gripper at the end of the arm can reach any grid square.

Compiled By: Naqash Sachwani

The following commands must be used:

Instructions for Robot Arm					
Right n	Moves n squares to the right				
Left n	Moves n squares to the left				

Instructions for Robot Arm			
Down n	Moves n squares down (extend)		
Up <i>n</i>	Moves n squares up (retract)		
Close	Closes the gripper		
Open	Opens the gripper		

For example, to move block "X" from square A7 to F7 (beginning at START) would require the following instructions:

Left 8 Down 6 Close Up 6 Right 5 Down 6

Open

Write a set of instructions to transfer block "Y" from C6 to G5 (beginning at START). [3]

LEFT 6 DOWN 5 CLOSE	
UP 5 RIGHT 4	

DOWN 4 OPEN

May/June 2008 P1

7 A floor turtle can use the following instructions:

Compiled By: Naqash Sachwani

Instruction	Meaning	
FORWARD n	Move <i>n</i> mm forward	
BACKWARD n	Move <i>n</i> mm backward	
LEFT d	Turn left d degrees	
RIGHT d	Turn right d degrees	
PENUP	Lift the pen	
PENDOWN	Lower the pen	
REPEAT n	Repeat the following instructions <i>n</i> times	
ENDREPEAT	Finish the REPEAT loop	
50 mm		
70 mm		

40 mm

20 mm

20 mm

20 mm

Start Finish Complete the set of instructions to draw the above shape Solution:

PENDOWN

LEFT 90 FORWARD 40 RIGHT 90 FORWARD 70 **RIGHT 90** FORWARD 50 **RIGHT 90** FORWARD 50 LEFT 90 FORWARD 20 **RIGHT 90** FORWARD 20 **RIGHT 90** FORWARD 20 **RIGHT 90** PENUP ------

May/June 2010 P12

15 A floor turtle can use the following instructions:

Compiled By: Naqash Sachwani

Instruction	Meaning
FORWARD d	Move <i>d</i> cm forward
BACKWARD d	Move <i>d</i> cm backward
LEFT t	Turn left <i>t</i> degrees
RIGHT t	Turn right t degrees
REPEAT n	Repeat the next set of instructions <i>n</i> times
ENDREPEAT	End of REPEAT loop
PENUP	Raise the pen
PENDOWN	Lower the pen

(In the following grid, each square is 10 cm by 10 cm.)

Complete the set of instructions to draw the shape (shown in bold lines) by filling in the blank lines. [5] Solution:

LEFT 90 PENDOWN **FORWARD 10 RIGHT 90** FORWARD 10 PENUP FORWARD 10 PENDOWN FORWARD 20 **RIGHT 90** FORWARD 20 **RIGHT 90** FORWARD 20 RIGHT 90 FORWARD 20 RIGHT 90 PENUP

FORWARD 10 PENDOWN FORWARD 10 RIGHT 90 FORWARD 20

May/June 2011 P12

16 A floor turtle can use the following instructions:

Instruction	Meaning
FORWARD d	Move d cm forward
BACKWARD d	Move d cm backward
LEFT t	Turn left t degrees
RIGHT t	Turn right t degrees
REPEAT n	Repeat the next set of instructions <i>n</i> times
ENDREPEAT	End of REPEAT loop
PENUP	Raise the pen
PENDOWN	Lower the pen

(Each square in the drawing below is 10 cm by 10 cm.)

Complete the set of instructions to draw the above shape (shown in bold lines). Solution:

PENDOWN **LEFT 90 REPEAT** 3 FORWARD 30 **RIGHT 90 ENDREPEAT** FORWARD 10 LEFT 90 PENUP FORWARD 10 PENDOWN **REPEAT 2** FORWARD 20 **RIGHT 90 ENDREPEAT** FORWARD 20 LEFT 90

May/June 2012 P11

5 A floor turtle can use the following instructions.

Complete the set of instructions to draw the above shape in the direction shown by the arrows. [5] Solution:

pendown forward 20 left 90
forward 10 right 90 forward 20
right 90 forward 40 right 90 forward 20 right 90
forward 10 right 45 forward 14

repeat 3	or	left 90
left 90	or	forward 14
forward 14	or	left 90
endrepeat	or	forward 14
		left 90
		forward 14
right 125		

right 135 forward 20 (PENUP)

May/June 2014 P11

5 A floor turtle can use the following instructions.

Instruction	Meaning				
FORWARD x	Move x cm forwards				
BACKWARD x	Move x cm backwards				
LEFT t	Turn left t degrees				
RIGHT t	Turn right t degrees				
REPEAT n	Repeat next set of instructions <i>n</i> times				
ENDREPEAT	Finish repeated instructions				
PENUP	Lift the pen				
PENDOWN	Lower the pen				
Each square is 10 cm by 10 cm Each diagonal line is 28 cm long	Barrier Barrier Barrier Start				

Complete the following set of instructions to draw the shape in the direction shown by the arrows. [5] Solution:

pendown left 45

forward 28 right 45

Compiled By: Naqash Sachwani

Computer Science 2210

forward 20 right 135 forward 28 left 90

- - - - - - - - - -

forward 28 right 135 forward 20 right 45 forward 28 *(penup)*

(left 45)

May/June 2014 P12

7 A floor turtle uses the following commands:

command	description	
FORWARD n	Move <i>n</i> cm in a forward direction	
BACKWARD n	Move <i>n</i> cm in a backward (reverse) direction	
RIGHT t	Turn right through t degrees	
LEFT t	Turn left through t degrees	
PENUP	Lift the drawing pen up	
PENDOWN	Lower the drawing pen	
REPEAT x	Repeat the next set of instructions x times	
ENDREPEAT	Finish the REPEAT loop	

In the following grid, each of the squares measures 10 cm by 10 cm:

Complete the set of instructions to draw the shape shown above (in bold lines). Solution:

- 1. PENDOWN
- 2. **REPEAT 2**

[5]

- 3. FORWARD 50
- 4. RIGHT 90
- 5. ENDREPEAT
- 6. FORWARD 10
- 7. RIGHT 90
- 8. FORWARD 20
- 9. PEN UP
- 10. LEFT 90
- 11. FORWARD 10
- 12. PEN DOWN
- 13. LEFT 90
- 14. FORWARD 20
- 15. RIGHT 90
- 16. FORWARD 10
- 17. RIGHT 90
- 18. FORWARD 40
- 19. LEFT 90
- 20. FORWARD 20
- 21. PENUP

Oct/Nov 2014 P12

9 A floor turtle uses the following commands:

Command	Description
FORWARD n	Move <i>n</i> cm in a forward direction
BACKWARD n	Move <i>n</i> cm in a backward (reverse) direction
RIGHT t	Turn right through <i>t</i> degrees
LEFT t	Turn left through t degrees
PENUP	Lift the drawing pen up
PENDOWN	Lower the drawing pen
REPEAT x	Repeat the next set of instructions x times
ENDREPEAT	Finish the REPEAT loop

In the following grid, each of the squares represents 10 cm by 10 cm:

Complete the set of instructions to draw the shape shown on the left: Solution:

- 1. **PENDOWN**
- 2. LEFT 90

[6]

Compiled By: Naqash Sachwani

Computer Science 2210

- 3. **REPEAT 2**
- 4. FORWARD 20
- 5. RIGHT 90
- 6. END REPEAT
- 7. FORWARD 20
- 8. LEFT 90
- 9. FORWARD 20
- 10. LEFT 90
- 11. FORWARD 20
- 12. RIGHT 90
- 13. FORWARD 20
- 14. RIGHT 90
- 15. FORWARD 20
- 16. PEN UP
- 17. FORWARD 20
- 18. PEN DOWN
- 19. FORWARD 20
- 20. RIGHT 90
- 21. FORWARD 60
- 22. RIGHT 90
- 23. FORWARD 20

Oct/Nov 2017 P12

1 A robot arm in a factory is programmed to move products.

The binary instructions to operate the robot arm are:

Operation **Binary Instruction** UP 1 1 1 1 0 0 DOWN 0 1 LEFT 1 0 0 1 RIGHT 0 1 1 0 1 0 OPEN 1 0 CLOSE 0 0 1 1

The instructions are entered as hexadecimal values.

An operator enters the values:

9 1 C 3

F

Convert the values and write down the operation (e.g. RIGHT) carried out by the robot arm. Solution:

- 9 LEFT
- 1 DOWN
- C OPEN 3 – CLOSE

F = UP

64

[5]

DATA REPRESENTATION 2003-2019

Oct/Nov 2003:

12 Two 7 segment displays are used on a car dashboard to give information to the driver. Each segment is numbered as shown.

May/June 2005:

66

Compiled By: Naqash Sachwani

- 8 A microprocessor controls the washing cycle of an automatic washing machine and gives output to the following devices:
 - water valve
 - heater
 - wash motor
 - pump

Control bits are sent to turn parts of the system on or off, i.e. 1 is on and 0 is off.

- (a) State what is happening when the above bit pattern is set.
 -[1]
- (b) Write down the bit pattern that would be set if the water has reached the correct level, the temperature is the required temperature, the clothes have been washed and the pump is now pumping the water out of the machine.

(c) State one other process that the microprocessor could control.

Solution:

- (a) heater on and motor on/hot wash
- (b) 8 7 6 5 4 3 2 1 0 0 0 1 0 0 0 0

(c) Any one from: release door – via door switch releasing powder at set intervals/fabric conditioner drying/spinning give error messages/beeps stored programs for different washes e.g. cottons/woollens

Oct/Nov 2005:

7 A company keeps details of all its employees on a file. The record format for each employee is:

Field:	Name	Sex	Department	Location	Years in company
Size:	15 characters	1 character	1 character	10 characters	2 digits

[1]

Computer Science 2210 The following codes are used:

Sex:	F = female	M = male
Department:	A = administration	F = finance
	M = management	S = sales

One typical record is:

Ρ	C	EMETRAKIS MFCYPRUS 05	
(a)	١n v	which Department does P Demetrakis work?	
		[1]
(b)	Co has	mplete the record for Miss K Schroder, who is in the sales department in Austria. Sh s worked in the company for 8 years.	ne
			31
(c)	Giv	e two advantages of using codes when storing data.	-1
	1		
	2		
(d)	(i)	[Why is it not a good idea to use the field Years in company to store informatio about how long an employee has worked for the company?	2] n
	(ii)	What would be a more suitable field?	
ution Fina	ance	Management	2]
(NC	DTE:	Accept FS AUSTRIA one box to the left)	
к	s	CHRODER FSAUSTRIA 08	
<		1 mark><1 mark><1 mk>	

- (c) Any two advantages from shorter, therefore less memory/storage used shorter, therefore less typing required/faster input less chance of errors being made easier/faster to carry out searches/process data easier/faster to do validation checks
- (d) (i) Any one from changes every year files would need to be updated every year
 - (ii) date/year employee joined the company

May/June 2007:

9 A 7-segment display is used to indicate which floor a lift is on. Each segment is numbered as shown:

A byte is used to hold the data needed to light the correct segments. Bit 0 is always zero. For example, 3 is represented by

and by

Bit Number

(a) If the lift is to stop at more than one floor, the data is held in successive bytes. For example:

[1]

Compiled By: Naqash Sachwani

(c) The lift is travelling down to stop at Floors 5, 3 and 1. When it stops at Floor 5, a passenger gets in and presses the button for Floor 2.

How does the system ensure that the lift stops at Floors 3, 2 and 1 in that order?

[3]

Solution:

- (a) 7
 - 5
- **(b)** 10110110
- (c) Any three points from:

Notes lift is going down Notes required floor is less than present floor Sorts remaining numbers into descending order of floors

Oct/Nov 2009:

15 Electric guitars consist of strings and frets.

Musical notes on the guitar can be represented using the TAB notation:

Each line represents a string; the dots indicate which strings must be held down with the fingers. These are shown with a binary value of 1; otherwise the binary value is 0.

Thus, the above note would be shown as:

6	5	4	3	2	1	TAB notation
1	0	0	1	1	0	TAD Hotation

It is also important to indicate **where** the strings should be held down. This is shown on the FRET. If the fingers are to be held down at the 20th FRET, this is shown in binary as:

32	16	8	4	2	1	FRET position
0	1	0	1	0	0	The position

(NOTE: add up the numbers in the headings where binary 1s appear, i.e. 16 + 4 = 20)

(a) A note is being played according to the TAB notation:

Write down the binary notation for the TAB and for the FRET position:

	TAB notation:	6	5	4	3	2	1		
	FRET position:	32	16	8	4	2	1		
<i>a</i> .)		h					D 4-4	000040	[2]
(D)	(I) Show on the dia	gram bei	ow whic	n note co	prrespon	ds to TA	B notatio	n: 000010.	
	1 _								
	2 _								
	3								
	4								
	5								
	e								
	0 _								
	(ii) What FRET pos	ition corr	esponds	to 0100	11?				[2]
(c)	Describe two advant	tages of	storing n	nusical n	otes in tl	his forma	at.		
	1								
	2								[2]
دمار	ution								[-]
(a)	TAB: 011101								
	FRET: 010010								
(b)	(i)								
	(ii) 19								

(c) Any two from:

can store music directly onto digital, optical media/mp3 players easy to modify music by simply changing binary values easy to teach somebody how to play an instrument easy to convert music for other instruments allows auto play back through interfaces uses less memory

Oct/Nov 2013 P13:

16 A customer logs on to a secure website using a code and a password. The first stage is to key in a code which is his date of birth (DDMMYY) followed by 1234. The second stage is to type in the first, third, fourth and seventh character of his password.

The customer last logged on to the website on 15th March 2010.

(a) (i) The customer's date of birth is 15th November 1985. What is the customer's code?

- (ii) Why is this code not unique?
- (iii) Suggest how this coding system could be improved.

[3]

(b) (i) The customer's password is PAULO168.

What does the customer need to type at the second stage?

(ii) Why are passwords used?

[2]

(c) If the customer gets through the two stages above he is then directed to a new security page which states:

"You were last logged on to this website on 14th April 2010. Is this correct?"

What could have happened to make the customer concerned about this statement? [1]

Solution: (a) (i)

- (c) Any two from:
 - he last logged on on 16th March 2010 and system shows 14th April 2010
 - there is evidence of illegal access
May/June 2014 P11:

12 A digital light meter has a 3-digit LCD. The value of each digit on the instrument display is stored as a 4-bit binary number in a register.

For example:

(a) What value is shown on the display if the 4-bit binary registers contain:

(b) What would be stored in the 4-bit binary registers if the display shows:

- (c) If any of the 4-bit binary registers X, Y or Z contain the value 1 1 1 1 this indicates an error.
 - (i) How could this error be shown on the instrument display?
 - (ii) What could cause an error to occur?

Solution:

[3]

[3]

[1]

[1]

1	0	0	0	Y
0	0	0	0	z
	-			

(c) (i) E, E, E Flashing display/digits ERR

(or the equivalent answer)

(ii) Any one from:

a fault in the system

reading exceeded the value 999

May/June 2014 P12:

16 An encryption system gives each letter of the alphabet a value:

A = 1, B = 2, C = 3,, Y = 25, Z = 26.

Each letter is stored in a 12-bit binary register. The letter "S" (19th letter) is stored as:

2048	1024	512	256	128	64	32	16	8	4	2	1	
0	0	0	0	0	0	0	1	0	0	1	1	

A 4-bit register is used to store the encryption key. This register shows how many places the bits are shifted to the left in the 12-bit register when it is encrypted. So,

8	4	2	1
0	1	0	1

means each bit in the 12-bit register is shifted 5 places to the left and the register now becomes:

2048	1024	512	256	128	64	32	16	8	4	2	1
0	0	1	0	0	1	1	0	0	0	0	0

Therefore, the letter "S" would be transmitted with the 4-bit register and the 12-bit register as follows:

0	1	0	1	0	0	1	0	0	1	1	0	0	0	0	0

(a) "W" is the 23rd letter of the alphabet.

(i) Show how this letter would be stored in the 12-bit register before encryption:

[2]

(b) Find which letter of the alphabet has been encrypted here. (Show all your working.)

																-	
0	0	1	1	0	0	0	0	1	1	0	0	1	0	0	0		
-	-		-	-	-	-	-		-	-	-	-	-	-	-	l l	

(c) (i) What is the largest encryption key that can be stored in the 4-bit register?

(ii) Convert this into denary (base 10).

Solution:

(a) (i)	0	0	0	0	0	0	0	1	0	1	1	1
(ii)	0	1	0	1	1	1	0	0	0	0	0	0

(b) one mark

- letter "Y" or 25th letter

One mark

- the binary number 0 0 0 0 1 1 0 0 1 0 0 0 has been shifted (to the left) 3 places

- so the binary number becomes 0 0 0 0 0 0 0 1 1 0 0 1 - 1+8+16
- 1+8+16

(c) (i) 1111

- (ii) 15 (allow follow through from (i))
- (iii) try to move 15 places to the left which is not possible
 - only 12 bits in register to store letter; 15 is too large
 - you would end up with 12 0s in the register

Oct/Nov 2014 P12:

12 An advertising sign uses large LED characters controlled by a microprocessor.

Each letter is formed from a grid made up of eight rectangles numbered 1 to 8:

1	2	3	4
5	6	7	8

For example, the letter "Z" is formed as follows:

 1
 2
 4

 5
 7
 8

Each rectangle has six LEDs that can light up; these LEDs are labelled "a" to "f":

The LEDs in a rectangle can be represented in a 6-bit register. For example, rectangle 3 of the letter "Z":

[3]

[4]

can be represented as:

Thus the letter "Z" can be represented by the 8 registers:

	f	е	d	с	b	а
1	0	0	0	0	0	0
2	0	0	0	0	0	1
3	0	1	0	0	0	1
4	0	0	0	0	0	0
5	0	0	0	0	0	0
6	0	1	0	1	0	0
7	0	0	0	1	0	0
8	0	0	0	0	0	0

(a) Show how the letter "E" can be represented by the eight 6-bit registers (four registers have been done for you).

f	е	d	с	b	а	_
0	0	0	0	0	0	1
						2
						3
0	0	0	0	0	0	4
0	0	0	0	0	0	5
						6
						7
0	0	0	0	0	0	8

(b) State which letter of the alphabet is represented by the following eight 6-bit registers.

Solution:

(a) 1 mark for each of four rows shown in bold below; there are two possible ways of doing this – one set of answers is shown on the left and the alternative is shown on the right in brackets. Don't allow mix and match; answers must either be as shown on the left OR as shown on the right

0	0	0	0	0	0												
0	0	1	0	0	1				(0	R	0	0	1	1	0	1)
0	0	0	0	0	1				(0	R	0	0	0	1	0	1)
0	0	0	0	0	0												
0	0	0	0	0	0												
0	0	1	1	0	1				(0	R	0	0	1	1	0	0)
0	0	0	1	0	1				(0	R	0	0	0	1	0	0)

000000

(b) 2 marks for identifying the letter letter: H

Oct/Nov 2014 P13:

14 Digits on an electronic display board can be represented on a 7 × 5 grid. For example, the digit 3 is represented as:

Each column in the grid is represented in a computer as a 7-bit register. Five registers are required to represent the state of the whole digit. The value 1 represents a shaded square and the value 0 represents an unshaded square. For example, the digit 3 is represented as:

Row number:	1	2	3	4	5	6	7	
Register 1	0	1	0	0	0	1	0	
Register 2	1	0	0	0	0	0	1	
Register 3	1	0	0	1	0	0	1	
Register 4	1	0	0	1	0	0	1	
Register 5	0	1	1	0	1	1	0	

(a) Show the contents of the five 7-bit registers when representing the digit 9:

[4]

- (b) In order to prevent errors, an 8-bit register is used. The 8th bit will contain:
 - 0 if the first 7 bits add up to an even number
 - 1 if the first 7 bits add up to an odd number

Complete the 8th bit for each register. The first register has been completed for you.

	1	2	3	4	5	6	7	8
Reg 1	0	1	0	0	0	1	0	0
Reg 2	1	0	0	0	0	0	1	
Reg 3	1	0	0	1	0	0	1	
Reg 4	1	0	0	1	0	0	1	
Reg 5	0	1	1	0	1	1	0	

Compiled By: Naqash Sachwani [3]

Solution:

201	ution.								
(a)	Row number:	1	2	3	4	5	6	7	
	Reg 1:	0	1	1	0	0	0	0	
	Reg 2:	1	0	0	1	0	0	1	
	Reg 3:	1	0	0	1	0	1	0	
	Reg 4:	1	0	0	1	1	0	0	
	Reg 5:	0	1	1	0	0	0	0	
(Ь)	Reg 1 + Reg 5 = Reg 2 = 1 mark Reg 3 = 1 mark Reg 4 = 1 mark	1 mark 8	τ						
	Reg 1:	0							
	Reg 2:	0							
	Reg 3:	1							
	Reg 4:	1							
	Reg 5:	0							
	Reg 2 + Reg 5 = Reg 3 = 1 mark Reg 4 = 1 mark	1 mark	¢.						

May/June 2015 P11:

- 8 An alarm clock is controlled by a microprocessor. It uses the 24 hour clock. The hour is represented by an 8-bit register, A, and the number of minutes is represented by another 8-bit register, B.
 - (a) Identify what time is represented by the following two 8-bit registers.

(b) An alarm has been set for 07:30. Two 8-bit registers, C and D, are used to represent the hours and minutes of the alarm time.

Show how 07:30 would be represented by these two registers:

- (c) Describe how the microprocessor can determine when to sound the clock alarm.
- (d) The LCD (liquid crystal display) on the clock face is back-lit using blue LEDs (light emitting diodes). The brightness of the clock face is determined by the level of light in the room. The amount of light given out by the LEDs is controlled by a control circuit.

[3]

Compiled By: Nagash Sachwani

Describe how the sensor, microprocessor and LEDs are used to maintain the correct brightness of the clock face. [3]

(e) Modern LCD monitors and televisions use LED back-lit technology.

Give two advantages of using this new technology compared to the older cold cathode fluorescent lamp (CCFL) method.

1	

2.....[2]

Solution:

- (a) hours: 18
- minutes: 53

(b)	hours ("C")										minutes ("D")								
	0	0	0	0	0	1	1	1	:	0	0	0	1	1	1	1	0		

- (c) Any three from:
 - reads values in registers "C" and "D"
 - and checks the values against those stored in registers "A" and "B"
 - (NOTE: the first two statements can be interchanged, i.e. "A" and "B" read first) If values in corresponding registers are the same
 - the microprocessor sends a signal to sound alarm/ring

(d) Any three from:

- uses a light sensor
- sends signal/data back to microprocessor
- signal/data converted to digital (using ADC)
- value compared by microprocessor with pre-set/stored value
- if value < stored value, signal sent by microprocessor ... _
- ... to the voltage supply (unit) ... "value" of signal determines voltage supplied/brightness of LED

(e) Any two from:

- no need to warm up
 - whiter tint/more vivid colours/brighter image
 - higher resolution
 - much thinner monitors possible/lighter weight
 - more reliable technology/longer lasting
 - uses much less power/more efficient

May/June 2015 P12:

- Parity checks are often used to check for errors that may occur during data transmission.
 - (a) A system uses even parity.

Tick (\checkmark) to show whether the following three bytes have been transmitted correctly or incorrectly.

Received byte	Byte transmitted correctly	Byte transmitted incorrectly
11001000		
01111100		
01101001		

[3]

(b) A parity byte is used to identify which bit has been transmitted incorrectly in a block of data.

The word "F L O W C H A R T" was transmitted using nine bytes of data (one byte per character). A tenth byte, the parity byte, was also transmitted.

The following block of data shows all ten bytes received after transmission. The system uses even parity and column 1 is the parity bit.

Compiled By: Naqash Sachwani

	lette	er	column 1	column 2	column 3	column 4	column 5	column 6	column 7	column 8		
byte 1	F		1	0	1	0	0	1	1	0		
byte 2	L	L 1 0 1 0 1		1	0	0						
byte 3	0		1	0	1	0	1	1	1	1		
byte 4	W 1 0 1 1 0 1								1	1		
byte 5	С		1	0	1	0	0	0	1	1		
byte 6	Н		0	0	1	0	1	0	0	0		
byte 7	A 0 0 1 0 0 1								0	1		
byte 8	R 1 0 1 1 0 1									0		
byte 9	T 1 0 1 1 0 1 0									0		
parity byte			1	0	1	1	1	1	1	0		
	(i) O W By C	ne o /rite yte n olum	f the bits h the byte n umber nn number	nas been tr umber and	ransmitted I column n	incorrectly umber of t	y. his bit:			[2		
	(ii) E	xpla	iin how yo	u arrived a	t your ans	wer for pa	rt (b)(i).			[2		
(c)	Give t	he d	enary (bas	se 10) valu	ue of the b	yte: 101	1111	0		.[1]		
(d)	A parity check may not identify that a bit has been transmitted incorrectly.											
	Descr	iho r	ne situati	on in which	h this coul	doccur				.[1]		

Describe one situation in which this could occur.

Solution:

(a) 1 mark per correctly placed tick

Received byte	Byte transmitted correctly	Byte transmitted incorrectly
11001000		4
01111100		1
01101001	1	

(b) (i) byte number: 7

column number: 6

- (ii) Any two from:
 - letter "A"(byte 7) transmitted as odd parity (three 1s)
 - column 6 has odd parity (seven 1s) -----
 - intersection of byte 7 and column 6 indicates incorrect bit value _
- (c) 190
- (d) Any one from:
 - 2 bits interchanged (e.g. $1 \rightarrow 0$ and $0 \rightarrow 1$) that won't change parity value
 - even number of bits/digits are transposed _
 - If there are multiple errors in the same byte/column, that still produce the same parity bit, ---the error will not be detected
- 10 Letters from the alphabet are represented in a computer by the following denary (base 10) values:

А	=	97
G	=	103
I	=	105
L	=	108
Ν	=	110

The word "ALIGN" is stored as: 97 108 105 103 110

Compiled By: Naqash Sachwani

(a) Convert each of the five values to binary. The first one has been done for you.

Letter		Denary value											
A (97):	0	1	1	0	0	0	0	1					
L (108):													
l (105):													
G (103):													
N (110):													

[2]

hexadecimal

(b) An encryption system works by shifting the binary value for a letter one place to the left. "A" then becomes:

1 1	0	0	0	0	1	0
-----	---	---	---	---	---	---

This binary value is then converted to hexadecimal; the hexadecimal value for "A" will be:

C 2

For the two letters "L" and "G", shift the binary values one place to the left and convert these values into hexadecimal:

		L: [G: []		
Solu	tion	:						I]		[4]
(a)	L ('	108):		0	1		1	0	1		1	0	0	
	I (1	105):	Γ	0	1		1	0	1		0	0	1	
	G (1	03):		0	1		1	0	0		1	1	1	
	N (1	10):	Γ	0	1		1	0	1		1	1	0	
(b)			_			•				hex	idecir	nal		-
	L:	1	1	0	1	1	0	0	0		D8			
	G:	1	1	0	0	1	1	1	0		CE			
										L				

Oct/Nov 2015 P12:

4 (a) (i) Convert the following two hexadecimal numbers into binary:

F A 7 D 3 E

Cor	np	uter	Sc	ier	nce	221	.0									C	omp	iled	By: Naqash Sachwani
		F	Α7																
												-					1		, 1
		D) 3 E	•															
																			[4]
		(ii)	No tw	ow j o n	perfo umbe	orm t ers f	he A	ND (I part (ogic) (i)	opera	ation	on e	ach c	orre	spond	ling pa	air of I	binary	bits in the
				с					- . .			_		_			-		1
																			[2]
	/L\	(iii)	Со	onve	ert yo	our a	insw	er in	part (ii	i) into	he	xadeo	imal.	hor	aida /	of the	tout a	toting	[2]
	(D)	(1)	tha	t ea	ach c	reat	es.	SHOW	IS HIN	VIL La	ag p	Jairs	onei	ner	side (n ine	lext s	stating	the colour
			<f<< td=""><td>ont</td><td>; co</td><td>lor</td><td>" ‡</td><td># F :</td><td>F 0 0</td><td>0</td><td>0 "</td><td>> R</td><td>ED <</td><td>/fo</td><td>nt></td><td></td><td></td><td></td><td></td></f<<>	ont	; co	lor	" ‡	# F :	F 0 0	0	0 "	> R	ED <	/fo	nt>				
			<f<< td=""><td>ont</td><td>; co</td><td>lor</td><td>" #</td><td># 0 # 0</td><td>0 F F</td><td>0</td><td>" 0</td><td>> G > P</td><td>REEN</td><td><!--</td--><td>font</td><td>></td><td></td><td></td><td></td></td></f<<>	ont	; co	lor	" #	# 0 # 0	0 F F	0	" 0	> G > P	REEN	</td <td>font</td> <td>></td> <td></td> <td></td> <td></td>	font	>			
			~10	Snu	, co	TOL	1		000	с.	E	<i>-</i> ь	LOF	I</td <td>ont></td> <td></td> <td></td> <td></td> <td></td>	ont>				
			<f<< td=""><td>ont</td><td>; co ; co</td><td>lor lor</td><td>" ‡</td><td>ŧ</td><td>X Y</td><td></td><td>"</td><td>> Y > M</td><td>ello Agen</td><td>W < TA</td><td>/fon <td>t> nt></td><td></td><td></td><td></td></td></f<<>	ont	; co ; co	lor lor	" ‡	ŧ	X Y		"	> Y > M	ello Agen	W < TA	/fon <td>t> nt></td> <td></td> <td></td> <td></td>	t> nt>			
			<£«	ont	; co	lor	"	ŧ	Z		"	> c	YAN	<td>ont></td> <td></td> <td></td> <td></td> <td></td>	ont>				
			Yel	low	is a	con	nbina	ation	of red	and	gree	en, m	agen	ta a	comb	oinatio	n of r	ed an	d blue and
			суа	in a	COL	ndina	ation	or gr	een ar		ue.								
			Sta	te v	what	6-di	git h	exade	ecimal	valu	es s	hould	l repla	ace)	X, Y a	nd Z i	n the	above	code.
			Χ.																
			Υ.																
			Ζ.																[3]
		(ii)	De	scri	be h	ow c	ther	colo	urs, su	ch a	sao	darke	r sha	de of	f blue.	are c	reate	d.	[2]
	(c)	1A-	- 16	6 – (C5 –	22 -	- FF	– FF	is an e	exam	ple	ofaN	/IAC a	addro	ess.				
		(i)	Ide	entit	fy wh	nat th	ne fin	st six	and la	ıst siz	x he	xade	cimal	digit	s repr	resent			
		.,	Eir	ot a	j jy di	aita								0					
			La	st s	ix di	gits .													[2]
		(ii)	St	ate	why	MA	C ad	dress	ses are	use	d.								[1]
Solu (a)	itio (i)	n:	г											1					
()	(.)	FA7	:	1	1		1	1		1	0	1	0		0	1	1	1	
			ĺ				•				^								
		D3E	:	1	1		U	1		U	U	1	1		1	1	1	U	
	(ii)	1			0	1		1) (1		0		0	1	1	0		
												•		•		•	•		
	(iii)	D 2	6																

Compiled By: Naqash Sachwani

Computer Science 2210

(b) (i) (X) FF FF 00

- (Y) FF 00 FF
- (Z) 00 FF FF
- (ii) hex values between 0 to F are combined together to create a hex code
 - different combinations in hex codes will create different shades/tones/colours
- (c) (i) First six digits: manufacturer code/manufacturer ID

Last six digits: serial number/serial ID of device/product

- (ii) Allows all devices to be uniquely identified
- 7 (a) Check digits are used to ensure the accuracy of input data.

A 7-digit code number has an extra digit on the right, called the check digit.

Digit position	1	2	3	4	5	6	7	8
Digit	-		8775	-		8 	-	-

The check digit is calculated as follows:

- · each digit in the number is multiplied by its digit position
- the seven results are then added together
- this total is divided by 11
- the remainder gives the check digit (if the remainder = 10, the check digit is X)
- (i) Calculate the check digit for the following code number. Show all your working.

	4	2	4	1	5	0	8	
Che	ck digit							
An	operator	has jus	t keyed i	n the foll	owing co	de numb	er:	0.00

3 2 4 0 0 4 5 X

Has the operator correctly keyed in the code number?

- (b) When data are transmitted from one device to another, a parity check is often carried out on each byte of data. The parity bit is often the leftmost bit in the byte.
 - (i) If a system uses even parity, give the parity bit for each of the following bytes: parity bit

narity bit	1	1	0	0	1	1	0
panty bit	0	0	0	0	0	0	1

(ii) A parity check can often detect corruption of a byte.
 Describe a situation in which it cannot detect corruption of a byte.
 [1]

Solution:

(ii)

[2]

(a) (i) $(4 \times 1) + (2 \times 2) + (4 \times 3) + (1 \times 4) + (5 \times 5) + (0 \times 6) + (8 \times 7)$

= 4 + 4 + 12 + 4 + 25 + 0 + 56 = 105

105/11 = 9 remainder 6 check digit is: **6**

- (ii) 1 mark
 - No/incorrect check digit

2 marks

- Total is 78
- 78/11 ...
- ... gives 7 remainder 1
- check digit should be 1
- (b) (i) parity bit

(ii) Any one from:

- an even number of digits are changed
- a transposition error(s) has occurred

Oct/Nov 2015 P13:

- 2 Sensors and a microprocessor monitor a car exhaust for high temperature and high carbon monoxide (CO) levels.
 - (a) Describe how the sensors and microprocessor are used to monitor the temperature and CO levels and warn the driver if either is out of range. [5]
 - (b) The information from seven sensors is sent to an engine management system in the car. The status of each sensor is stored in an 8-bit register; a value of 1 indicates a fault condition:

For example, a register showing **01011000** indicates:

- temperature too high
- fuel pressure too low
- voltage too low
- (i) Identify the fault condition(s) that the following register indicates:

	0	0	1	0	0	1	0	1	[2]
(ii)	The syste Write the o	m uses oc correct par	ld parity. rity bit in e	ach regist	er.				
		1	1	1	0	0	1	0	

		0	0	0	1	1	1	0	[2]	
(iii)	A car has a faulty airbag and the CO level is too high. Write what should be contained in the 8-bit register.									
(iv)	 Give the hexadecimal value of the binary number shown in part (iii). 									

Solution:

(a) Any five from:

- sensors send signals/data to microprocessor
- signal/data converted to digital (by an ADC)
- microprocessor compares temperature/carbon monoxide level/value with stored level/value
- if CO level > stored value, microprocessor sends signal...
- if temperature > stored value, microprocessor sends signal...
- ...to light warning bulb on dashboard/sounds alarm
- (b) (i) CO (carbon monoxide) level too high
 - oil pressure too low
 - brake pads too thin

(ii)	1	1	1	1	0	0	1	0
	0	0	0	0	1	1	1	0
(iii)	1	0	1	0	0	0	1	0

(iv) A 2 (allow follow through from part (iii))

3 A section of computer memory is shown below:

Address	Contents
1000 0000	0110 1110
1000 0001	0101 0001
1000 0010	1000 1101
1000 0011	1000 1100
ل	ل
1000 1100	
1000 1101	
1000 1110	
1000 1111	

(a) (i) The contents of memory location 1000 0001 are to be read. Show the contents of the Memory Address Register (MAR) and the Memory Data Register (MDR) during this read operation:

MAR				
MDR				

(ii) The value 0111 1001 is to be written into memory location 1000 1110. Show the contents of the MAR and MDR during this write operation:

MAR					
MDR					

(iii) Show any changes to the computer memory following the read and write operations in part (a)(i) and part (a)(ii).

Address	Contents
1000 0000	0110 1110
1000 0001	0101 0001
1000 0010	1000 1101
1000 0011	1000 1100
ل ا	لم
1000 1100	
1000 1101	
1000 1110	
1000 1111	

- (b) Name three other registers used in computers.
- (c) The control unit is part of a computer system. What is the function of the control unit?

Solution:

(a) (i) MAR	1	0	0	0	0	0	0	1
MDR	0	1	0	1	0	0	0	1
(ii) MAR	1	0	0	0	1	1	1	0
MDR	0	1	1	1	1	0	0	1

(iii)	Address	Contents
	1000 0000	0110 1110
	1000 0001	0101 0001
	1000 0010	1000 1101
	1000 0011	1000 1100
	Ĺ	Ĺ
	1000 1100	
	1000 1101	
	1000 1110	0111 1001
	1000 1111	

(b) - CIR (Current Instruction Register)

PC (Program Counter)

- Acc (Accumulator)

[1] [3]

[2]

[3]

- (c) Controls operation of memory, processor and input/output
 - Instructions are interpreted

- Sends signals to other components telling them "what to do"

May/June 2016 P11:

7 Each seat on a flight is uniquely identified on an LCD above the seat. For example, seat 035C is shown as:

The first three characters are digits that represent the row.

The fourth character is the seat position in that row. This is a single letter, A to F, that is stored as a hexadecimal value.

Each of the four display characters can be stored in a 4-bit register. For example, 0 and C would be represented as:

	8	4	2	1
0:	0	0	0	0
C:	1	1	0	0

(a) Show how the 4-bit registers would store the remaining two characters, 3 and 5.

(b) Identify which seat is stored in the following 4-bit registers.

0	0	0	1	
1	0	0	1	
0	1	0	0	
1	1	1	0	

Solution:

(a)	3 [0	0	1	I	1		
	5	0	1	0)	1		
(b)	0	0	0	1	<u> </u>		→	1
	1	0	0	1				9
	0	1	0	0	<u> </u>		→	4
	1	1	1	0	<u> </u>		→	Е

9 Check digits are used to ensure the accuracy of entered data. A 7-digit number has an extra digit on the right, called the check digit.

digit position:	1	2	3	4	5	6	7	8
digit:	-	-	-	-	-	-	-	ŧ
							c	heck digit

[2]

[2]

[3]

	(b)	The b	arcod	le in p	art (a) con	tains	the de	enary	value	26	640						
		Conve	ert this	s value	e to h	exade	ecimal	Ι.										
		Write	the va	alue a	s a 12	2-bit b	binarv	numb	oer.									
			1	1	1	7	_	1								1	٦	
			1															
																		[4]
	(c)	An ai	rport u	uses th	ne typ	e of b	barcoo	de sha	own i	n part	(a) to	adve	ertise	local	plac	es of	interes	st.
	• •	Desci	ribe ho	ow a v	isitor	landi	ng at	the ai	rport	could	use t	hese	barco	des t	to he	lp pla	n their	visit.
																		[3]
دما	ution	· ·																
(-)		l. (audale			C -d-													
(a)	QR	(quick	respo	onsej	Code													
(b)	-	A 5 0 (1 mar	k)														
	1	0	1	0		0	1	0	1		0	0	0	0				
	l.		•				· ·		l.		U.	U.						
(c)	Any	three	from:				•			_								
	-	visitor	scans	s the G	NR co	de wit	th (the	e came	era o	n) the I	mobile	e dev	ice					
	-	App is	used	to rea	d/inte	rpret	the Q	R cod	le									
	-	links to	o a we	ebsite/	opens	s a do	cume	nt										
					-													
	-	to a	access	local	touris	st info	rmatic	n										

May/June 2016 P12:

(a) Convert the following hexadecimal number into 12-bit binary:

Compiled By: Naqash Sachwani

89

	Binary number B:	1	0	0	1	1	1	0
(b)	I	Parity I	Bit					
	Binary number A	1						
	Binary number B	1						

Oct/Nov 2016 P12:

4 Nine bytes of data are transmitted from one computer to another. Even parity is used. An additional parity byte is also sent.

The ten bytes arrive at the destination computer as follows:

	parity bit	bit 2	bit 3	bit 4	bit 5	bit 6	bit 7	bit 8
byte 1	1	1	1	0	1	1	1	0
byte 2	0	0	0	0	0	1	0	1
byte 3	0	1	1	1	1	0	0	0
byte 4	1	1	0	0	0	0	0	0
byte 5	1	0	1	1	1	1	1	0
byte 6	0	1	0	1	1	0	0	1
byte 7	0	1	1	1	0	0	1	1
byte 8	0	0	1	1	0	1	1	0
byte 9	1	1	0	0	0	0	1	1
parity byte	0	0	1	0	0	0	1	0

One of the bits was corrupted during the data transmission.

(a) Circle the corrupt bit in the corrupt byte in the table above.

(b) Explain how the corrupted bit was found.

Solution:

(a) Intersection of Row 7 and column 4 circled

- (b) Row (byte number) 7 has an odd number of 1s (five 1s)
 - Column (bit number) 4 has an odd number of 1s (five 1s)

5 A computer uses an 8-bit register.

The 8-bit register contains binary integers.

(a) Write the denary (base 10) value represented by:

0 1 1 1 0 0 0 0	128	64	32	16	8	4	2	1
	0	1	1	1	0	0	0	0

(b) All the bits in the register are shifted one place to the right as shown below.

[1]

[1]

[1]

[2]

11

Compiled By: Nagash Sachwani

Write the denary number that is represented after this shift.

- (c) State the effect the shift to the right had on the original denary number from part (a). [1]
- (d) The original number in part (a) is shifted three places to the right. (i) Show the new binary number:

[1] Write the equivalent denary number. [1] (ii) Solution: (a) 112 (b) 56 (c) divided by 2 // value 112 was halved // multiplied by 0.5 (d) (i) 0 0 0 0 1 1 1 0 14 (ii) (e) Any two from: run out of places to the right of register / at the end of register right-most 1 would be lost number would become 3 instead of 3.5 loss of precision A security system is installed in a house. A hexadecimal number is entered to activate or deactivate the alarm. (a) The alarm code is set to hexadecimal number 2 A F Show how this number would be stored in a 12-bit binary register. [3] (b) Identify two sensors that the security system could use to detect intruders. Describe how each sensor could be used in the security system. Sensor 1 Description Sensor 2 Solution: (a) 0010 1111 1010 (b) Infrared/motion sensor Receives infrared rays/heat Sends data to microprocessor Receives microwaves Placed in the corner of a room, across a doorway Used to detect the heat of an intruder // used to detect if an infrared beam has been broken by an intruder Pressure sensor Receives current if circuit created // stops receiving current if circuit is broken Sends data to microprocessor Placed on a window/door, at the entrance Used to detect a change in pressure 5 (c) A microprocessor regularly samples the output, X. Each sample value is stored in an 8-bit register as shown below. One bit of this register is reserved as a parity bit. Five consecutive output values of 1 indicate a fault condition. Identify which of the following registers shows a fault condition. Parity bit 1 1 1 1 0 1 0 Register Y 1 1 1 1 0 1 0 1 Register Z

Register[1]

Compiled By: Naqash Sachwani

(d) When eight bytes of data have been collected, they are transmitted to a computer 100 km away. Parity checks are carried out to identify if the data has been transmitted correctly. The system uses **even parity** and column 1 is the parity bit.

		parity bit	column 2	column 3	column 4	column 5	column 6	column 7	column 8	
by	te 1	1	0	0	0	0	1	0	0	1
by	te 2	1	1	1	1	0	0	1	1	1
by	te 3	0	1	0	0	1	0	0	0	1
by	te 4	0	1	1	1	0	0	0	1	1
by	te 5	1	0	0	0	1	1	1	1	1
by	te 6	0	0	0	0	0	0	0	0	1
by	te 7	1	1	1	0	1	0	0	0	1
by	te 8	1	0	0	0	1	1	1	0	1
pa by	rity te	1	0	1	1	0	1	1	1	1
(ii)	byte	tify which o	column cor	ntains an e	rror.				[1]	
(iii)	The Give	incorrect b the correc	oit is indicat	ted where t	the byte nu	umber and	column cro	DSS.	[4]	
(iv) (v)	Calc Cons inco	culate the o sidering th rrect bit is	denary valu e fault cond located and	ue of the co dition giver d corrected	prrected by n in part (c d.	vte. s), explain s	why it is ve	ery importa	[1] [1] Int that the [2]	
(i) (i) (ii) (iii) (iv) (v)	: (byte) (colur corre that g (follov Any t – T – T	5 5 cted byte ives the v w through wo from: he byte w he fault co	is: 1 0 0 1 value: 1 5 applies) vould be tra	1111 9 ansmitted	without h	naving 5 c	onsecutiv	e 1's		
(a)	A mai engin One e (i) C	nufacturer e. naine has onvert this	the ID: (ane engin 0431 umber to a	a 12-bit bir	is a denar	y identific t.	ation num	iber (ID) ti	o ea
(b)	(ii) S The c Each Calcu 10-ho	Show how current sta piece of c ulate the n	this numb tus of the lata collec umber of Show your	er would b engine is s ted is 8 by kilobytes t working	e represe sent to a c tes in size hat would	nted in he omputer ir Data col be neede	xadecimal n the aerop lection occ d to store	plane. curs every the data o	30 second	[2 [3 ds. Juring

Solu	Itio	n:												
(a)	(i)	0	0	0	1	1	0	1	0	1	1	1	1	
	(ii)	1 A F												-
(b)	Wor _ Ansv _	king 1200 > 9600/1 wer 9.4 or	< 8 = 96 1024 or 9.6 kilo	00 (byte 9600/10 bytes	es) DOO									
Spe	ecin	nen r	aper	2016:										
1	A c mos	ompan st digit	ny sellin (positio	g CDs on 1) is a	uses a a check	unique digit.	6-digit	identifi	cation n	umber	for eac	h CD t	itle. The	e right-
	For	examp	ole,	,										
					654	321	-	digit po	sition					
					306	149	-	Identific	cation n	umber				
						. 1	·							
	The	e validi	ty of the	e numbe	er and c	check di	ait is ca	lculate	d as foll	ows.				
	•	multi	ply eacl	h digit b	y its dig	it positi	on	liculated	4 45 101	541 5.				
	•	add u	p the re	esults o	f the mu	ultiplicat	ions							
	•	divide if the	e the an romain	lswer by der is 0	y 11 the ide	ntificati		bor and	d chock	diait ar	bilev o			
	(a)	Show	whethe	er the fo	ollowing	identifi	cation i	number	s are va	lid or n	ot. You	must	show ho	ow vou
	()	arrive Identi worki	d at you fication	ur answ numbe	ver. r 1:4 2	219	2 3							
		valid	or not v	alid?										
		Ident	ification	numbe	er 2: 8	201	56						•••••	
		worki	ng:											
		valid	or not v	alid?										[3]
	(b)	Find t 5 0 2 workii	ne che 2 4 1_ ng:	ck digit	for this	Identific	ation n	umber.						
		check	digit:											[2]
	(c)	Desci detec	ribe, wi t.	th exan	nples, t	wo diffe	erent ty	pes of	data er	ntry err	ors that	tache	ck digit	would
		2												
Cal		£					••••••	•••••	•••••					[2]
50it	doni	n: tificatio	n numb		vorking									
(u)	aen	uncauc	n num	=	(4 × 6)	+ (2 ×	5) + (1	× 4) + (9 × 3) +	(2 × 2)	+ (3 ×	1)		
				=	= 24 + 1 = 72 - 1	0 + 4 + 1	27 + 4	+ 3						
				=	6 rema	, ainder 6								
				<u>v</u>	alid/not	valid: N	IOT va	lid						
	den	tificatio	on num	ber 2: <u>v</u> =	vorking = (8 × 6)	+ (2 ×	5) + (0	× 4) + (1 × 3) +	(5 × 2)) + (6 ×	1)		
				=	= 48 + 1	0+0+	3 + 10	+6		(0)		.,		
				=	- 77 ÷ 1	1 vinde- 0								
				= 	alid/not	valid: \	/ALID							

(b) working = $(5 \times 6) + (0 \times 5) + (2 \times 4) + (4 \times 3) + (1 \times 2)$ = 30 + 0 + 8 + 12 + 2= 52need to add 3 to make the total 55 (i.e. exactly divisible by 11) <u>check digit</u>: 3

(c) 2 digits transposed

(e.g. 280419 becomes 280149/two digits have been switched)

incorrect digit (e.g. 280419 becomes 250419/one of the digits has been mistyped)

4 A digital alarm clock is controlled by a microprocessor. It uses the 24-hour clock system (i.e. 6 pm is 18:00).

Each digit in a typical display is represented by a 4-digit binary code. For example:

is represented by:

(clock display)	(c	locł	٢d	isp	lay)
-----------------	----	------	----	-----	------

0	0	0	0	1st digit (0)
1	0	0	0	2nd digit (8)
0	0	1	1	3rd digit (3)
0	1	0	1	4th digit (5)

(a) What time is shown on the clock display if the 4-digit binary codes are:

0	0	0	1	
0	1	1	0	
0	1	0	0	
1	0	0	1	

(clock display)

[2]

[4]

(b) What would be stored in the 4-digit binary codes if the clock display time was:

(c) The clock alarm has been set at 08:00. Describe the actions of the microprocessor which enable the alarm to sound at 08:00. [2]

Solution:

- (a)1 6 : 4 9
- (b) 0 0 0 1 1st digit
 - 0 1 1 1 2nd digit
 - 0010 3rd digit
 - 1 0 0 1 4th digit
- (c) Any two from:
 - microprocessor compares present time with stored time
 - if the values are the same
 - sends signal to sound alarm

(

9

achwani

[4]

Co	mputer	Scie	nce 22	210					Comp	iled By:	Nagash Sa
5	Bytes of even par	data ity ch	transfer eck.	red using	a serial c	able are o	hecked fo	or errors a	t the rece	eiving end	using an
	Can thes (a) 0101 (b) 1100 (c) How	e byt 10101 1000 can a	es of da any erro	ta pass th rs be corr	e even pa	arity checl	k?				[1] [1] [2]
Sol	ution:										
(a) (b) (c)	Yes No – re-rea – reque	ading est th	the byte at the by	that was te is reser	sent nt						
13	When a character The ASC There are	key i r type II rep e two	s presse d into m resentat letters s	ed on the ain memo tion for A i stored in th	keyboard ory. is 65 (den he followin	d, the con ary), for E ng memor	nputer sto 3 is 66 (de y location	ores the A mary), etc s:	SCII repi	resentation	n of the
	Location	n 1	А								
	Location	12	с								
	(a) (i)	Shov	v the cor	ntents of L	ocation 1	and Loca	tion 2 as	binary usi	ng 8 bits.		
		Loca	tion 1						-		
		Loca	tion 2								
											[2]

(ii) Show the contents of Location 1 and Location 2 as hexadecimal. Location 1

(b) The following machine code instruction is stored in a location of main memory: [2]

|--|

Convert this binary pattern into hexadecimal.

(c) Explain why a programmer would prefer to see the contents of the locations displayed as hexadecimal rather than binary, when debugging his program that reads the key presses. [2]

Solution:

(a)	(i)	Location 1	0	1	0	0	0	0	0	1
		Location 2	0	1	0	0	0	0	1	1
	(ii)	41								

- 43 (b) FA97
- easier to identify values (c) –
 - easier to spot errors

May/June 2017 P11:

The memory of a computer contains data and instructions in binary. The following instruction is stored in a location of the memory. 0 0 0 0 1 0 1 1 1 1 1 1 1 1 0 0 [2] (a) Convert the instruction into hexadecimal. (b) Explain why a programmer might prefer to read the instruction in hexadecimal rather than in [2] binary. (c) Give two other uses of hexadecimal. Use 1

Solution:

(a)	29FC
(b)	 Two from: Easier/quicker to understand/read Easier to debug/identify errors Fewer digits are used / shorter // takes up less space on screen // more can be shown on screen / page
(c)	Two from: Notations for colour in HTML // HTML colour (codes) Error messages MAC address // IP address

Locations in memory

Memory dump

5 (a) Parity checks are often used to detect errors that may occur during data transmission.

The received bytes in the table below were transmitted using odd parity.

Tick (\checkmark) to show whether each byte has been corrupted during transmission or not corrupted during transmission.

Received byte	corrupted during transmission (✓)	not corrupted during transmission (√)
10110100		
01101101		
1000001		

(b) Another method of error detection is Automatic Repeat reQuest (ARQ). Explain how ARQ is used in error detection.

Solution:

(a)		Received byte	corrupted during transmission (√)	not corrupted during transmission (√)								
	10)110100	~									
	01	1101101 🗸										
	10	000001	~									
(b)	Fo	Ir from:										
. ,		Uses acknowledgement and time out										
		check performed on rece check, check sum	Check performed on received data // error is detected by e.g. parity check. check sum									
		If error detected, request sent to resend data // negative										
		acknowledgment is used	acknowledgment is used									
		If no acknowledgement is	sent that data is	received // positiv	e							
		acknowledgement is used	1									
		Data is resent / Resend re	equest repeated,	till data is resent of	correctly							
		or request times out //	limit is reached									

May/June 2017 P12:

5 (a) The denary number 57 is to be stored in two different computer registers.

- Convert 57 from denary to binary and show your working.
- (b) Show the binary number from part (a) as it would be stored in the following registers. [2]

					Register 1
--	--	--	--	--	------------

[3] [4]

Compiled By: Naqash Sachwani

Γ																	F	legister 2
(c)	A b ma Giv Use	inary in m e tw e 1 . e 2 .	y nu emo o ot	mber ory. her u	r stor uses	ed in for a	a reg binan	ister c y numl	an ha ber st	ve ma	ny dif	ferent gister.	uses,	for ex	ample	e an a	[2] ddress ir	1
(d)	A re	egist Γ	er in	aco	ompu	iter c	ontain	is bina	ary dig	gits.			7					
			0		0	1	1	'	1	0	1	0						
olutio	The Cor n:	e cor nvert	tent the	s of bina	the re try in	egiste teger	er rep to he	resent xadec	a bin imal.	ary in	teger.						[1]	
(a)	32 + (00)	16 - 1110	+8+ 101	1														
(b)	0	C)	1	1	1	0	0	1									
	0	0	0	0	0	0	0	0 0	0	1	1	1	0) 1				
(c)		fror data ASC num part a sc inst	n: a CII va ber of ir ound ructio	alue . mage / sor	/Uni e/sm und s	code nall in sampl	value nage le / sm	/ char	acter und tra	ack								
(d)	ЗA																	

Oct/Nov 2017 P12:

3 (a) Explain the differences between the binary number system and the denary number system. [4](b) Explain the process of converting the binary number 1010 into a denary number. [5]

Solution:

	••••	
(a)	An	y four from (Max 2 per number system) :
		A binary number system is a base-2 system A denary number system is a base-10 system
		A binary number system uses 0 and 1 values A denary number system uses 0 to 9 values
		A binary number system has units/ placeholders/column headings that increase by the power of 2 A denary number system has units/ placeholders/column headings that increase by the power of 10
		Binary has more digit for the same value// Denary has less digits for the same value
(b)	Fiv	re from:
(-)		Correct column headings / place holders by example
		Correctly place a 1 or a 0 for each column
		Identify the columns to be added
		Add together the (denary) values identified
		this will give a total which is the denary number/answer
		Answer is 10

[2]

- (a) A computer has 2048 MB of RAM. 8 How many GB of RAM does the computer have? Show your working.GB
 - (b) Describe one item that is stored in RAM.
 - (c) Explain three ways that RAM is different to ROM. 1..... 2 3[3]

Solution:

(a)	□ 20 □ 2	048/1024 (or 1024 · 2) GB
(b)	C Ins	structions/programs/data currently in use
(c)	Any th	nree from: RAM is volatile, ROM is non-volatile RAM is temporary, ROM is (semi) permanent RAM normally has a larger capacity than ROM RAM can be edited ROM cannot be edited // Data can be read from and written to RAM, ROM can only be read from.

Oct/Nov 2017 P13:

- 1 A washing machine has a small display screen built into it.
 - One use of the display screen is to show an error code when a problem has occurred with a washing cycle.

- (a) State whether the display screen is an input, output or storage device. [1]
- (b) The display screen shows a hexadecimal error code:
 - E04 This error code means that the water will not empty out of the washing machine. Convert this error code to binary.

CONVC	it this c			naiy.						
	1			1						
										[3
State	why how	adooin	al ic ur	od to c	licolou	the orre	ar oodo			i i
State v	vity nex	auecin	iai is us	eu 10 0	льріау	uie ent	JI COUE			

(c) State why hexadecimal is used to display the error code.

Solution:

(a)	0	Du	tpu	ıt											
(b)					E				0				4		
		1		1	1	0	0	0	0	0	0	1	0	0	
(c)	A	٩ny	/ o 	ne fr He: Sm	om: kadeo aller a	imal c amour	odes at of m	can fit iemor	in a s y need	malle led to	r displ store	ay rat the h	ther th ex erre	an a t or me	full text based message essages than text based

May/June 2018 P11:

Jane answers an examination question about computers and data correctly.

Six different words or numbers have been removed from her answer. Complete the sentences in Jane's answer, using the list given. Not all items in the list need to be used. 2

- 10
- 16
- analogue
- binary
- denary
- digital
- hexadecimal

As humans, we process data, but a computer cannot

Compiled By: Naqash Sachwani

process this type of data. For a computer to be able to process data it needs to be

converted to data. As humans, we mostly use anumber system; this is a base number system. Computers use a number system; this is a base number system. [6] Solution: analogue digital denary 10 binary 2 2 Dheeraj identifies three hexadecimal numbers. Write the **denary** number for each of the three hexadecimal numbers: 2A 101 21E[3] Solution: 42

- 257
- 542
- 3 The three binary numbers in the registers A, B and C have been transmitted from one computer to another.
 Parity bit

	r any bit							
Register A	1	0	0	1	1	0	0	0
Register B	0	1	1	0	0	1	1	1
Register C	1	0	0	1	1	0	0	1

One binary number has been transmitted incorrectly. This is identified through the use of a parity bit. Identify which register contains the binary number that has been transmitted **incorrectly**. Explain the reason for your choice.

Solution:

Register C

Any three from:

- Count the number of 1/0 bits (in each byte/register)
- Two bytes/registers have an odd number of 1/0 bits // Two use odd parity
- Odd parity must be the parity used
- One byte/register has an even number of 1/0 bits // One uses even parity

- One with an even number of one bits/even parity is incorrect // Register C should have odd parity

May/June 2018 P12:

Different units of data can be used to represent the size of a file, as it changes in size.

- Fill in the missing units of data, using the list given:
 - byte
 - gigabyte (GB)
 - megabyte (MB)
 - nibble

Compiled By: Naqash Sachwani

[4]

Computer Science 2210

The units of data increase in size from smallest to largest. Smallest

Largest

Solution:

nibble _

(a)

- byte _
- megabyte (MB) _
- gigabyte (GB) _
- 3 A stopwatch uses six digits to display hours, minutes and seconds. The stopwatch is stopped at:

		_									-				
		[0	2	:	3	1	:	5	8					
An 8-bit regis (a) Write the	ster is us 8-bit bin	ed to s ary nu	Ho store umbe	eacl eacl ers th	h pa at a	Min air of are c	f dig urre	s jits. ently	Seco	onds ed for	the	Hours,	Minute	es (and Seconds .
Hours															
Minutes															
Seconds															[3]

(b) The stopwatch is started again and then stopped. When the watch is stopped, the 8-bit binary registers show:

Hours	0	0	0	0	0	1	0	1
Minutes	0	0	0	1	1	0	1	0
Seconds	0	0	1	1	0	1	1	1

Write the denary values that will now be shown on the stopwatch.

[3]

Jafar is using the Internet when he gets the message: 4

"D03, page is not available"

Jafar remembers that hexadecimal is often used to represent binary values in error codes. Convert the hexadecimal number in the error message into 12-bit binary.

							[3]
lu	tion:						

So

1	1	0	1	0	0	0	0	0	0	1	1
~	— 1 n	nark —	\rightarrow	4	— 1 m	nark —	\rightarrow	4	— 1 n	nark —	\rightarrow

The three binary numbers in the registers X, Y and Z have been transmitted from one computer to 5 another. Darity hit

								Failty bit
Register X	1	0	0	1	0	0	1	0
Register Y	1	1	1	0	0	1	1	1
Register Z	1	1	1	0	1	0	0	1

Only one binary number has been transmitted correctly. This is identified through the use of a parity bit.

Identify which register contains the binary number that has been transmitted correctly. Explain the reason for your choice.

The binary number that has been transmitted correctly is in Register

Solution:

Register Y

- Any three from:
 - Count the number of 1/0 bits (in each byte/register)
 - Two bytes/registers have an odd number of 1/0 bits // Two have odd parity
 - Even parity must be the parity used
 - One byte/register has an even number of 1/0 bits // One uses even parity
 - The two with an odd number of one bits/odd parity are incorrect // Register X and Z should have even parity

Oct/Nov 2018 P12:

Computers use a character set to convert text into binary. One character set that can be used is ASCII. Each letter in ASCII can also be represented as a denary value.

- (a) The word BUS has the denary values:

	Ŭ	3	
66	85	83	

Convert the denary values into 8-bit binary.

66				
85				
83				

[3]

Each letter in ASCII can also be represented as a hexadecimal value. The word KEY has the 8-bit binary values: (b)

[3]

	к	E	Y	
ſ	01001011	01000101	01011001	
č	i) Convert th	e three 8-bit bi	nary values int	o hexa

- decimal. 'y 01001011 01000101 01011001
- (ii) Give three other uses of hexadecimal notation in computer science. [3] (iii) State two benefits of using hexadecimal notation to represent binary values. Benefit 1

Solution:

(a)	66	0	1	0	0	0	0	1	0				
	85	0	1	0	1	0	1	0	1				
	83	0	1	0	1	0	0	1	1				
(b)(i)	4B 45 59												
(b)(ii)	Three from: Image: (HTML) colour codes Image: Error messages Image: MAC addresses Image: Image												
(b)(iii)	 Locations in memory Two from: Easier to read/write/understand (for humans) Easier to remember (for humans) Short way to represent binary // Uses less screen/display space Fewer errors made (in data transcription) Easier to debug (for humans) 												

Oct/Nov 2018 P13:

- Parity checks and Automatic Repeat reQuests (ARQ) can be used to check for errors during data 2 transmission and storage.
 - (a) A system uses even parity. Write the appropriate parity bit for each byte.

Parity Bit							
	1	0	1	0	0	1	1
	1	0	1	1	1	1	1
	1	0	1	0	0	0	1

[2] (b) Explain how Automatic Repeat reQuests (ARQ) are used in data transmission and storage. [2] [1]

(c) State one other method that could be used to check for transmission errors.

Solution:

[6] [4]

2(a)	Parity Bit														
		0	1	0	1	0	0	1	1							
		0	1	0	1	1	1	1	1							
		1	1	0	1	0	0	0	1							
2(b))	Two from: Se Us Re If W Th	et of rule ses ack equest i no resp /hen dat ne reser	es for co nowledg s sent (onse/ad a recei nd requ	ontrollin gement (with da cknowle ved con est is re	g error and tin ta) requ dgmen tains a peated	checkir neout uiring ac t within n error a ly sent t	ig/deteo knowle certain a reque until pa	ction // it's edgement time fran st is sent cket is re	s an error ne data pa (automat ceived en	detection ackage is tically) to r ror free/lin	method // u resent resend the d nit is reache	ised lata	to de	etect en	rors ment receivec
2(c))	Checksum														
4	The Ase (a)	MAC add ection of a Complete first numb	MAC MAC the table the table	f a dev addres ible to s alrea	vice is r ss is sh show t dy bee	eprese own. E the 8-b n conv	ented u Each pa bit bina verted.	ising h air of h ry equ	exadeci iexadeci ivalents	imal. imal digi for the ៖	ts is store section o	ed using 8 f MAC add	-bit Ires	bina s. Tł	ry. 1e	
			L. 11													

	6A	FF	08	93			
	01101010				[3]		
Explain why data is stored as binary in computers.							

(b) Explain why data is stored as binary in computers.

Solution:

4(a)	01	101010	1111111	00001000	10010011	
4(b)	C 0	Computers use sw Only uses 2 states	/itches / logic gates ; / On or Off / 1 or 0			

May/June 2019 P11:

Hexadecimal is used for MAC addresses. 1 Part of a MAC address is given:

Each pair of digits is stored as binary in an 8-bit register.

(a) Show what the binary register stores for each pair of the given digits.

97				
5C				
E1				

(b) Explain what is meant by a MAC address.

(c) Give two other examples where hexadecimal can be used. Example 1

Solution:

1(a)	97	1	0	0	1	0	1	1	1
	5C	0	1	0	1	1	1	0	0
	E1	1	1	1	0	0	0	0	1

1(b)	Four from:
	 Media Access Control (address)
	 Used to identify a device
	 It is a unique (address)
	 It is a static address // It does not change
	 It is set by the manufacturer
	 The first part is the manufacturer ID/number/identifies the manufacturer
	 The second part is the serial number/ID
1(c)	Two from e.g.:
	Colour codes // Colour in HTML / CSS
	Error messages
	Locations in memory
	 Memory dump // debugging
	IP address
	ASCII // Unicode
	Assembly language
	URL

May/June 2019 P12:

9 The contents of three binary registers have been transmitted from one computer to another. Even parity has been used as an error detection method.

The outcome after transmission is:

Register A and Register C have been transmitted correctly.

Register B has been transmitted incorrectly.

Complete the Parity bit for each register to show the given outcome.

	Parity bit								
Register A		0	1	0	0	1	0	1	
Register B		1	0	0	0	0	0	1]
Register C		1	0	0	0	0	1	1] [3]

Solution:

	Parity bit							
Register A	1	0	1	0	0	1	0	1
Register B	1	1	0	0	0	0	0	1
Register C	1	1	0	0	0	0	1	1

Oct/Nov 2019 P12:

4 An 8-bit binary register contains the value:

0	0	1	1	0	1	0	0	
---	---	---	---	---	---	---	---	--

(a) Convert the binary value to denary.

(001110		ary value	to donia	y.					
(b)	The co	ntents of	the regis	ster shifte	ed one pl	ace to th	e right wo	ould give	the resu	lt:
		0	0	0	1	1	0	1	0	

The contents of the register shown at the start of question 4 are shifted two places to the left. Show the contents of the register after this shift has taken place.

[1]

[1] [1]

(c) State the effect this shift has on the denary value in part (a).

Solution:

Solutio	n:								
4(a)		52							
4(b)									
4(D)		1	1	0	1	0	0	0	0
4(c)		It is	multiplied	d by 4					

Oct/Nov 2019 P13:

5 The contents of three binary registers have been transmitted from one computer to another. Odd parity has been used as an error detection method.
The outcome ofter transmission is:

The outcome after transmission is:

Register A and Register B have been transmitted correctly.

Register C has been transmitted incorrectly.

Write the appropriate Parity bit for each register to show the given outcome.

	Parity bit							
Register A		0	1	0	0	0	1	1
Register B		0	0	0	0	1	1	1
Register C		0	0	0	0	0	1	1

Solution:

	Parity							
Register A	0	0	1	0	0	0	1	1
Register B	0	0	0	0	0	1	1	1
Register C	0	0	0	0	0	0	1	1

[3]

DATABASE 2003-2019

[1]

[2]

Computer Science 2210

May/June 2003:

12 An estate agent keeps a file of properties for rent in the city. Several records are shown in the following diagram:

REF	AREA	TYPE	FEATURE	RENT(\$)
H002	South	Detached	Waterfall	21000
H006	South	Bungalow	Pool	19000
H008	West	Bungalow	Pond	15000
H005	South	Detached	Patio	14000
H003	North	Semi-Detached	Pool	12000
H009	North	Detached	Courtyard	11000
H004	West	Bungalow	Pool View	9000
H001	South	Semi-Detached	Fish Pond	8000
H007	North	Terraced	BBQ Pit	2000

- (a) Which field in the file should be used as a key field?
- (b) State a validation check that should be made on the AREA data as it is entered into the file. [1]
- (c) Which RENT(\$) data will be listed if the following search condition is input? (FEATURE = "Pool") OR (TYPE = "Bungalow")
- (d) Write down a search condition to find all the properties in the south which have a rent less than \$15000. [3]
- (e) Write down the reference numbers if the file is sorted in ascending order on TYPE then AREA. [3]

Solution:

- (a) REF
- (b) One mark per named check:

presence

type description

- (c) 19000, 15000, 12000, 9000
- minus one mark each error; ignore order and dollar if given

Oct/Nov 2003:

9 A mail order company selling hi-fi equipment keeps details of its stock on a database. Part of the database is shown below

Code_Num	Colour	Speakers	Power(W)	Num_of_CDs	Price (\$)
13416	Black	4	50	4	650
13425	Silver	2	60	1	500
13504	Silver	4	80	5	750
14001	Black	4	100	3	1100
14005	Black	4	100	10	1200
14010	Silver	2	40	1	350

(a) Which field should be used as the key field? [1]

(b) Which Code_Num data will be listed if the following search condition is input? [2] (Speakers=4) AND (Num_of_CDs>4)

Compiled By: Naqash Sachwani

(c) Write down a search condition to find all the equipment which is silver coloured or has a power rating over 70W. [3]

(d)Write down the order of the Code_Num after the Price(\$) field has been sorted in ascending order. [2]

Solution:

- (a) Code_Num
- (b) 13504
- 14005 (c) (Power(W) > 70) OR (Colour = "Silver") (ignore case and quotes; don't accept 70W)

(d) 14010, 13425, 13416, 13504, 14001, 14005

May/June 2004:

16 A music club keeps a file of members on a computer system. Part of the file is shown in the following diagram:

CODE	SURNAME	INITIAL	SEX	PHONE NO	DATE OF BIRTH
M1001	Philips	R	F	3294625	11/12/86
M1011	Patel	Р	М	2453674	04/01/88
M1025	Brown	А	F	2756484	15/05/86
M1037	Khan	S. L	М	2759815	18/02/87
M1057	Lee	B. R	М	2456785	21/07/86
M1073	Smith	L	F	3297684	09/02/88
M1096	Chong	M. A	М	2765492	03/09/87
M1102	Schon	G	М	2451843	22/04/88
M1124	Shah	J. A	М	3298746	14/04/86
M1139	Davies	S. L	F	2768798	09/01/88

(a) State how many fields there are in each record. [1]

(b) State the data type that should be used for the CODE data. [1]

- (c) State two reasons why the data in the SEX field has been coded. [2]
- (d) Which CODE data will be listed if the following search condition is input? [2]

(DATE OF BIRTH< 01/01/87) AND (SEX = "M")

(e) Describe how the file can be sorted in ascending order of SURNAME. [2]

Solution:

- (a) 6
- (b) text/alphanumeric/string
- (c) less errors on input requires less storage space validation quicker to input quicker to find
- (d) M1057, M1124
- (e) highlight/select SURNAME field click on sort A to Z icon/in menu

or query, click on (sort) ascending

Oct/Nov 2004:

Compiled By: Naqash Sachwani

17 A database stores details about cars in a showroom. The format of the first three fields is shown below.

Field name	Field description	Data type	Field length
MAKE	name of manufacturer	text	30
NUMPLATE	car registration no.	alphanumeric	8
REG	date car registered	date	6

(a) State two more fields, one numeric and one text, and for each give the field description and the field length.

Field name (numeric)	•••
Field description	•••
Field length	[2]
Field name (text)	
Field description	
Field length	[2]
(b) Give a situation, in each case, where data about these cars would need to be amend	ded, deleted and
inserted. amended:	
deleted:	
inserted:	[3]

Solution:

(a)	(i)	name of field	description	field length
		ENGSIZE NUMDOOR FUELCON PRICE ODOMETER	engine capacity (litres) number of doors economy of vehicle cost of vehicle recorded distance (km or miles)	4 1 3 6 7
	(ii)	name of field	description	field length
		Colour Model Prevown Option	colour of vehicle make and model of vehicle details of previous owner list of extras on vehicle	20 20 50 30
(b)	ame info pric cha	end rmation is incorre e of vehicle need nge of colour	ect Is to be changed (e.g. sales)	
	dele veh veh	ete (record delete icle sold icle scrapped	ed)	
	inse new mor	ert (info into a fie v vehicle arrived re information ab	ld) out current vehicle becomes know	'n

May/June 2005:

5 A shop keeps its stock file on a computer system. Part of the file is shown in the diagram below:

Compiled By: Nagash Sachwani

STOCK NO	DESCRIPTION	COLOUR	WEIGHT (KG)	IN STOCK	PRICE (\$)
L801	Laptop Case	В	1.6	15	100
L802	Beauty case	В	2.6	12	80
L803	Carry-on case	В	2.0	18	160
L807	Day pack	R	0.6	22	90
L808	Rucksack	G	1.8	16	60
L809	Backpack	В	3.8	17	76
L814	Portfolio	В	0.4	20	25
L816	Travel bag	G	4.3	16	70
L817	Roller bag	В	2.7	19	180
L820	Deluxe case	S	2.6	12	165

The following codes have been used.

R = Red

S = Silver

B = Black (a) State how many records are shown in the diagram. [1]

(b) State two advantages of coding the data in the COLOUR field. [2]

(c) State the data type that should be used for the WEIGHT (KG) data. [1]

(d) State one advantage of using fixed-length records for storing the data. [1]

(e) Which STOCK NO data will be listed if the following search condition is input? [2]

G = Green

(COLOUR NOT "B") AND (WEIGHT (KG) < 2.0)

(f) Write down a search condition that will search for all the items with less than 16 in stock and the price is more than \$100. [3]

(g) State which field should be used to link this stock file to a supplier file. Give a reason for your choice of field.

Field Reason......[2]

Solution:

(a) 10

- (b) fewer errors on input less storage space required/less memory easier/quicker to input quicker to find/search/easier to locate easier/faster validation
- number/numeric/decimal/1 d.p. (C)
- (d) faster process/easier to program updated/new records will occupy the same space as the old records allows accurate estimation of storage required
- L807, L808 807,808 (e) or
- (IN STOCK <16) AND (PRICE (\$) > 100) (f) or (IN STOCK < = 15) AND (PRICE (\$) > 100) 1 mark 1 mark 1 mark NOTE: ignore case 16/15 and 100/101 award the mark with or without speech marks (g) field - STOCK NO
 - reason unique/primary key/key

Oct/Nov 2006:

Compiled By: Naqash Sachwani

18 A car dealer uses a database to keep details of cars in stock. Part of the stock file is shown below.

RegNo	Make	Model	Colour	Doors	Engine(cc)	Price(\$)
AT 15 APC	Renault	Laguna	Black	5	1600	5800
NX 21 TPQ	Opel	Corsa	Green	3	1400	2000
WS 46 ART	VW	Golf	Blue	3	1600	3400
RP 09 NTR	VW	Golf	Red	5	2000	6350
VV 81 KKT	Proton	Wira	White	4	1300	2200
NK 55 ARM	vw	Golf	White	3	1800	4100

(a)(i) State the fieldname that should be used as the key field.

(ii) Explain the purpose of a key field.

(b) The following search condition is input: (Price(\$) < 5000) AND (Model = Golf) Write down the records that match the above search condition using only RegNo.

(c) Write down a search condition to find cars with an Engine greater than 1400cc or which have less than 5 Doors. (d) When a car is sold, the sale needs to be linked to a customer file. Suggest a new field which could be used to link the stock file to the customer file.

Solution:

(a)	(i)	Reg No
	(ii)	unique identifier
		used to search the database
		used to link to other tables of data (foreign data)
(b)	WS 46	ART
• •	NK 55	ARM
(c)	Either	(Engine (cc) > 1400) OR (Doors < 5)

- Or (Doors < 5) OR (Engine (cc) > 1400)
- (d) customer code customer ref no

(NOT customer name)

May/June 2007:

7 A hospital has decided to computerise its administration system.

(a) Give three ways this could affect the hospital workers. The hospital will be using a database which holds confidential personal data.

(b) State two precautions that the hospital should take to prevent unauthorised access to the data.

(c) Describe how the database could be recovered if it became corrupted.

(d) Give one example, in each case, of when it would be necessary to amend data, delete data and insert data into the patient database.

Solution:

(a)	deskilling
• •	retraining needed
	loss of jobs
	frees staff from admin jobs
	less time wasted looking for lost paperwork

- (b) passwords (changed regularly) use of ids/log on ids/user names firewalls physical measures (e.g. locked rooms) logging off after use
- (c) use of back up files generations of files (GFS)

encryption = 0 removal of external memory = 0

(d)	amend	 change name/address/doctor etc. new illness re-admission 	change of age = 0
	delete	 patient leaves area/country patient dies 	leaves hospital = 0
	insert	 new patient arrives new baby born 	

Oct/Nov 2007:

- 15 A school Science department is going to use a database to record details about its equipment.
- (a) Give two advantages of using a computer system rather than a manual filing system.
- (b) Part of the database is shown below:

Equipment	Code No	Quantity in Stock	Need to re-order?	Supplier Name	Price (\$)	Stock Value (\$)
Beaker	01043	25	Y	Labquip	1.04	26.00
Test tube	01051	200	N	Labquip	0.40	80.00
Clamp stand	01065	51	Ν	Anglera	3.25	165.75
Tongs	01151	23	Y	Anglera	0.55	12.65
Spatula	01222	62	N	Anglera	0.66	40.92
Flask	01341	15	Y	Labquip	1.70	27.50

(i)As data is entered it needs to be verified. Describe one way this could be done.

(ii)Data also needs to be validated. Using fields from the database as examples, describe two different validation checks which could be performed on the data.

Solution:

 (a) easier to know when to re-order automatic re-ordering easier/faster to update easier/faster to access information more up to date stock levels fewer mistakes takes up less storage space

(b) (i) double entry visual check/comparison with original

(ii)	equipment code quantity need to re-order supplier name price	 character check, length check length check, character check, check digit range check, character check character check, length check, Boolean check character check, length check format check, range check
	stock value	- range check, character check

Oct/Nov 2008:

8 To gain access to a database, a user must first type in a user ID and then a password which needs to be verified.

(a) How is a password usually verified?

(b) In spite of these safeguards, unauthorised access to the database is still possible. What could be done:

- (i) to prevent data being used by unauthorised people?
- (ii) to prevent loss of data once the database has been illegally accessed?

(c) Personal data is protected to some extent by a Data Protection Act. Give two requirements of a Data **Protection Act.**

Solution:

- (a) keyed/typed in twice/compared to stored password
- (b) (i) encrypt the data
 - (ii) Any one from: read only access back up the files regularly generations of files
- (c) Any two from:

data must be up to date data can only be read/used for the purpose for which it was collected data must be accurate data must be destroyed/deleted when no longer required/don't keep longer than necessary data user must register what data is used/stored data must be used/collected fairly and lawfully data must be held securely data must be protected from accidental damage only authorised people can have access to data fines imposed for data mis-use data should not be passed on to a 3rd party without owner's permission person can view data and have it changes/removed if incorrect safe harbour [2]

[1]

15) A database has been produced showing solar system statistics.

Name of planet	Distance from sun (x10 ⁶) (km)	Number of moons	Number of rings	Maximum surface temperature (°C)	Diameter (km)
Mercury	58	0	0	427	4880
Venus	108	0	0	480	12100
Earth	150	1	0	58	12756
Mars	228	2	0	17	6787
Jupiter	778	16	3	-150	143200
Saturn	1427	18	1000	-180	120000
Uranus	2871	15	11	-210	51800
Neptune	4497	8	4	-214	49528
Pluto	5914	1	0	-220	2330

(a) How many records are there in this database?

(b) The following search condition was typed in: (Number of moons > 0) AND (Diameter (km) < 15000) Using Name of planet, write down the results of this search:

(c) Write down a search condition to find out which planets have rings or have a diameter more than 50000 km.

(d) Name a different validation check for each of the following fields.

(i) Maximum surface temperature (°C)

(ii) Name of planet

(e) The data in the database was sorted in descending order using the Number of moons field. Using Name of planet only, write down the results of this sort

Solution:

(a) 9

(b) Earth, Mars, Pluto

(-1 for each error/addition/omission)

(c) (Number of rings > 0) OR (Diameter (km) $> 50\ 000$)

```
< ------ 1 mark ------ > < ------ 1 mark ------ >
```

or

(Diameter (km) > 50 000) OR (Number of rings > 0)

< ----- 1 mark ------ > < ----- 1 mark ------ >

- (d) (i) range check character/type check
 - (ii) character/type check length check

NB check in (ii) must be different to check in (i)

(e) Saturn, Jupiter, Uranus, Neptune, Mars, Earth, Pluto, Mercury, Venus

(any order) (any order)

(1 mark for the correct data – ALL data must be correct for the mark) (1 mark for all planets in correct order)

May/June 2009:

17 A car sales company uses a database.

Here are three tables from the database:

New Car Sales

Customer Reference	Car Ordered	Specification	Delivery Date
151319	Cancelled order	None	Not applicable
162154	VW Golf	21215168	December 2008
171216	BMW 320i	07981624	February 2009

Customer Details

Customer Reference	Customer Name	Customer Address	Trade In?
141516	J Smith	7 Toll Road	No
151319	M Kyle	14 Coast Road	No
162154	D Khan	19 Main Street	Yes
165196	S Gogic	555 Trabant Road	No
171216	D Marques	21 Lakki Harbour	Yes

Car Manufacturer

Specification	Car Description	List of Extras	Cost Price (\$)
07981624	BMW 320i	CNORVZ	48 500
21151198	VW Golf	ABCETU	16 200
21215168	VW Golf	BDEFJL	21 000
31311115	Ford Focus	APRSW	17 000

(a) How many records are shown in the Customer Details table?

(b) (i) Which field connects the New Car Sales table with the Customer Details table?

(ii) Which field connects the New Car Sales table with the Car Manufacturer table?

(c) Give two reasons why List of Extras in the Car Manufacturer table is stored in code form.

(d) A customer goes into the showroom and the salesperson keys in 162154. What fields and information would be shown on the output screen?

(e) Give one advantage to the car sales company of holding customer information on a database.

Solution:

- (a) 5
- (b) (i) Customer Reference
 - (ii) Specification

	(ii) Specification		
(c)	any two from:		
	reduces typing errors		
	uses less memory		
	faster to type in		
	quicker to sort		
	store in one field		
	easier to validate		
(d)	Car Description/Car Ordered	VW Golf }	
• •	Delivery Date	Dec 2008 } Ne	w Car Sales
	Specification	21215168	
		,	
	Customer Name	D Khan	}
	Customer Address	19 Main Street	Customer Details
	Trade In	Yes	}

(1 mark 1 field name and contents from New Car Sales table plus 1 field name and contents from Customer Details table)

List of Extras	BDEFJL	}
Cost Price (\$)	21 000	} Car Manufacturer

(1 mark 1 field name and contents from Car Manufacturer table)

(e) any one advantage from: later use if customer wants to trade in again in 2 or 3 years' time can send out new product information if safety/recall issues from car manufacturers service/safety check reminders

Oct/Nov 2009:

13 A radio station keeps a database of all its music CDs. Here is part of this database:

Reference Number	CD title	number of tracks	special edition	CD length (mins)	number of hit tracks
1111	Afternoon Glory	12	N	55	1
1112	Stone Tulips	10	N	42	3
1113	Aftermath	8	N	33	0
1114	Major Peppers	15	Y	72	5
1115	Seaside	9	N	40	2
1116	Lookout	12	N	62	2
1117	Future Dreams	11	N	60	3
1118	Moonlight	14	Y	70	2

(a) How many records are there in the database section?

(b) If the following query was input: (CD length (mins) < 60) AND (number of hit tracks > 1) using Reference Number only, write down which data items would be output.

(c) Write down a query to select which CDs are special edition or have more than 10 tracks.

(d) The database is sorted in descending order on CD length (mins). Using Reference Number only, write down the order of the records following this sort.

(e) The radio station has a phone-in service where a listener texts the title of the CD on their mobile phone. The popularity of each CD is then known and which CDs the radio station should play. (i) How would this information be stored?

(ii) How could this information be linked to the database?

Solution:

- **(a)** 8
- (b) 1112, 1115
- (c) (special edition = "Y") OR (number of tracks > 10)

<----1 mark ----> <----1 mark ---->

(number of tracks > 10) OR (special edition = "Y")

<----1 mark ----> <----1 mark ---->

(d) 1114, 1118, 1116, 1117, 1111, 1112, 1115, 1113

(e) (i) Any one from:

(auto capture) on the database itself transaction file spreadsheet

(ii) link through the reference number/CD title/primary key

May/June 2010 P11:

15 A database has been set up to bring together information about the world's tallest buildings. A section of the database is shown below.

Ref No.	Building Name	City	Country	Year	No. of Floors	Height (m)	Height (ft)
TA1	Taipei 101	Taipei	Taiwan	2004	101	508	1667
MA1	Petronas Towers	Kuala Lumpur	Malaysia	1998	88	452	1483
US1	Sears Tower	Chicago	USA	1974	110	442	1451
CH1	Jiu Mao Building	Shanghai	China	1999	88	421	1381
CH2	Finance Centre	Hong Kong	China	2003	88	415	1362
CH3	CITIC Plaza	Guangzhan	China	1996	80	391	1283
CH4	Shun Hing Square	Shenzhen	China	1996	69	384	1260
US2	Empire State Building	New York	USA	1931	102	381	1250
CH5	Central Plaza	Hong Kong	China	1992	78	374	1227
CH6	Bank of China	Hong Kong	China	1989	70	367	1205
DU1	Emirates Tower	Dubai	Dubai	1999	54	355	1165
TA2	Tuntex Sky Tower	Kaohsiung	Taiwan	1997	85	348	1140

(a) How many records are in the section of the database shown?

(b) (b) Using Ref No. only, which records would be output if the following search condition was entered: (Year < 1990) AND (Height (m) > 375)?

(c) Write down a search condition to find out how many buildings are in China or how many buildings have more than 80 floors.

(d) For each of the following fields give a different validation check. Year Ref No.

(e) The database was sorted in descending order of Year. Using Ref No. only, write down the results of the sort:

Solution:

```
(a) 12
```

- (b) US1,US2
- (c) (Country = "China") OR (No. of Floors > 80) ←-----1 mark -----→ ←------1 mark -----→

(No. of Floors > 80) OR (Country = "China")

- (d) (i) range check, character check, length check
 - (ii) character check, type check, length check, format check

(any order)

(any order)

May/June 2010 P12:

11 database has been set up showing information about cars:

Car ref	No of doors	Engine (litres)	CO₂ (g/km)	Fuel used (km/litre)	No of cylinders
A	3	1.4	145	15.3	4
В	4	2.0	193	12.β	4
С	5	2.5	231	10.9	6
D	3	2.0	190	11.2	6
E	4	1.3	120	17.5	4
F	5	1.8	180	14.6	4
G	4	3.0	240	9.5	6
н	4	1.2	115	19.7	3

(a)Using Car ref only, write down which cars would be output if the following search condition was used: (No of doors = 4) AND (Fuel used (km/litre) > 15)

(b)Write down a search condition to find out which cars have engines larger than 1.8 litres OR have CO2 emissions higher than 150 g/km.

(c)The database is sorted in ascending order on Fuel used (km/litre). Using Car ref only, write down the results of the sort.

Solution:

(a) E, H

(b) (Engine (litres) > 1.8) OR (CO₂ (g/km) > 150) \leftarrow (1 mark) \rightarrow \leftarrow (1 mark) \rightarrow Or (CO₂ (g/km) > 150) OR (Engine (litres) > 1.8) \leftarrow (1 mark) \rightarrow \leftarrow (1 mark) \rightarrow

(c) G, C, D, B, F, A, E, H
 (1 mark for correct order (fuel used)
 1 mark for ascending order)

Oct/Nov 2010 P11:

10 A database has been set up to store information about aircraft. A section is shown below.

Ref	Aircraft Name	Max Weight	Length	Wing	Max Speed
No		(kg)	(m)	Span (m)	(kph)
1001	An-225 Cossack	600 000	84	88	850
2001	Airbus A380F	591 950	73	80	951
3001	C-5 Galaxy	381 000	76	68	845
3002	Boeing 777-600	351 500	74	65	930
2002	Airbus A340-600	366 000	75	63	877
3003	Boeing 747	397 000	71	64	967
3004	Boeing 777	660 000	74	61	893
2003	Airbus A330-300	234 000	63	60	800
3005	Boeing 767	204 100	61	52	914
3006	B52 Fortress	221 400	49	56	927
3007	Boeing 757	123 400	54	38	914

(a) How many fields are in each record?

Compiled By: Naqash Sachwani

(b) Using Ref No only, what records would be output if the following search condition was entered: (Max Weight(kg) > 350 000) AND (Wing Span(m) < 66)?

(c) Write down the search condition to find out which aircraft have a length greater than 74 metres or have a maximum speed less than 900 kph.

Solution:

- (a) 6 (fields)
- (b) 3002, 2002, 3003, 3004

(c) (Length (m) > 74) OR (Max Speed (kph) < 900)

 $\leftarrow - (1 \text{ mark}) - \rightarrow \quad \leftarrow - - - - - (1 \text{ mark}) - - - - - \rightarrow$

OR

(Max Speed (kph) < 900) OR (Length (m) > 74)

 $\leftarrow - - - - (1 \text{ mark}) - - - \rightarrow \quad \leftarrow - - - (1 \text{ mark}) - - - \rightarrow$

May/June 2011 P11:

15 A database showing the population of world cities has been produced. A section of the database is shown below.

Ref No	Name of City	Country	Area	City Population (m)	Urban Population (m)	Capital
1	Tokyo	Japan	Asia	33.2	34.1	Yes
2	New York	USA	America	17.8	21.9	No
3	Sao Paulo	Brazil	America	17.7	20.2	No
4	Seoul	S Korea	Asia	17.5	22.3	Yes
5	Mexico City	Mexico	America	17.4	22.7	Yes
6	Osaka	Japan	Asia	16.4	16.8	No
7	Manila	Philippines	Asia	14.8	14.9	Yes
8	Mumbai	India	Asia	14.4	19.7	No
9	Jakarta	Indonesia	Asia	14.3	17.2	Yes
10	Calcutta	India	Asia	12.7	15.6	No

(a) How many records are shown above?

(b) Using Ref No only, which records would be found if the following search condition was typed in (Country = "India" OR Area = "America") AND (Capital = "No")

(c) Write a search condition to find the cities in Asia with a city population greater than 17 million OR an urban population greater than 20 million.

(d) Give one advantage of using Y or N rather than Yes or No in the Capital column.

Solution:

- (a) 10
- (b) 2, 3, 8, 10

1 mark per **two** correct records Loose 1 mark for each additional record

(c) (Area = "Asia") AND (City Population(m) > 17 OR Urban Population(m) > 20)

<-----1 mark ----> <------1 mark ----->

OR

Oct/Nov 2011 P13:

12A database has been set up to show details about countries. Part of the database is shown below.

Country code	Country	Continent	Area (millions sq km)	Population (millions)	Coastline	Currency
CH	China	Asia	9.6	1320	Yes	yuan
IN	India	Asia	3.8	1150	Yes	rupee
PO	Poland	Europe	0.3	39	Yes	zloty
BO	Bolivia	America	1.1	9	No	boliviano
TI	Tibet	Asia	1.2	2	No	yuan
BR	Brazil	America	8.5	192	Yes	real
RO	Romania	Europe	0.2	22	No	leu
SA	Saudi Arabia	Asia	2.2	28	Yes	riyal
ZA	Zambia	Africa	0.7	12	No	kwacha

(a) How many fields are in each record? [1]

(b) Using Country code only, what would be output if the following search condition was used? [2] (Population (millions) > 1000) OR (Continent = "Asia")

(c) Write down a search condition to find which countries have a land area less than 3 million square km and also have a coastline. [2]

(d) If the database was sorted in descending order of population size, using Country code only, what would be the order of countries in the database? [2]

Solution:

(a) 7

- (b) CH, IN, TI, SA
- (c) (Area (millions sq km) < 3) AND (Coastline = "Yes") <-----1 mark -----><----1 mark ----->

OR

(Coastline = "Yes") AND (Area (millions sq km) < 3) <---1 mark ----><----1 mark ----> (d) CH, IN, BR, PO, SA, RO, ZA, BO, TI

May/June 2012:

14 A database was set up to show the properties of certain chemical elements. Part of the database is shown below.

Name of element	Element Symbol	Atomic Number	Atomic Weight	Melting Point (C)	Boiling Point (C)	State at room temp
oxygen	0	8	16	- 218	- 183	gas
iron	Fe	26	56	1538	2861	solid
mercury	Hg	80	201	- 38	356	liquid
bromine	Br	35	80	- 7	59	liquid
osmium	Os	76	190	3033	5012	solid
caesium	Cs	55	133	28	671	solid
gallium	Ga	31	70	30	2204	solid
argon	Ar	18	40	- 189	- 186	gas
silver	Ag	47	108	961	2162	solid

(a) How many fields are in each record?

(b) The following search condition was entered: (Melting Point (C) < 40) AND (Atomic Weight > 100) Using Element Symbol only, which records would be output?

(c) We need to know which elements have an atomic number greater than 50 and are solid at room temperature. Write down the search condition to find out these elements.

Compiled By: Naqash Sachwani

(d) The data are to be sorted in descending order of Boiling Point (C). Write down the new order of records using the Element Symbol only.

```
Solution:
```

```
    (a) 7
    (b) Hg, Cs

            (1) (1) Correct Answer Only
            (c) (Atomic Number > 50) AND (State at room temp = "solid")
            <----1 mark ----> 
            Or
            (State at room temp = "solid") AND (Atomic Number > 50)
            <----1 mark ----> 
            Must use exact spelling
            (d) Os, Fe, Ga, Ag, Cs, Hg, Br, O, Ar
```

Oct/Nov 2012:

11 A database was set up showing the largest ocean-going liners. Part of the database is shown below.

Liner ID	Year built	Gross Tonnage	Country of Registration	Country of Construction
OA	2009	225282	Norway	Finland
IN	2008	154407	Norway	Finland
QM	2004	148528	UK	France
EX	2000	137 308	Norway	Finland
VO	1999	137276	Norway	Finland
GP	1997	108865	UK	Italy
DE	1996	101 509	USA	Italy
SP	1995	77499	UK	Italy
SO	1988	73192	Norway	France
FR	1972	66343	France	France
QE	1940	86673	UK	UK
NO	1935	79280	France	France
MJ	1922	56561	UK	Germany
TI	1912	46329	UK	UK
MA	1907	31938	UK	UK

(a) How many records are shown in the above part?

(b) Using Liner ID only, what would be output if the following search condition was typed in:

```
(Year built < 2000) AND (Country of Registration = Country of Construction)?
```

(c) Write the search condition to find out which liners have a gross tonnage larger than 80 000 or are registered in the UK.

Solution:

- (a) 15 records
- (b) FR, QE, NO, TI, MA
 - (-1 mark for each error or omission)

(c) (Gross Tonnage > 80 000) OR (Country of Registration = "UK")

<-----1mark -----> <-----1 mark ----->

or

(Country of Registration = "UK") OR (Gross Tonnage > 80 000)

<-----1 mark -----> <----- 1 mark ----->

May/June 2013 P11:

12 A database was set up to compare oil companies. A section of the database is shown below:

Code	Name of	No of	No of	Head	Profits	Share
Coue	company	employees	countries	office	(billion \$)	price (\$)
AR	Arrows	60 0 00	30	Americas	8.0	39.00
GZ	Gazjeti	35000	4	Asia	5.0	44.50
KO	Konoco	40 000	22	Americas	10.0	18.55
OS	Oilbras	56000	11	Americas	4.0	59.60
SD	Sand Oil	102000	51	Europe	12.0	15.30
SN	Southern Oil	50000	15	Americas	11.0	10.90
ST	Static Oil	80000	31	Americas	10.0	52.05
SU	Summation	70000	40	Europe	9.0	30.40
WP	Wasp Petrol	90000	44	Europe	15.0	92.80

(a) How many fields are there in each record?

(b) The following search condition was entered:

(No of countries < 30) AND (Head office = "Americas")

Using Code only, which records would be output?

(c) What search condition is needed to find out which oil companies have a share price less than \$50 or whose profits were greater than 8 billion dollars?

Solution:

(a) 7

(b) KO, OS, SN

(-1 mark for each error)

(c) (Share price (\$) < 50.00) OR (Profits (billion \$) > 8.0)

<----- (1 mark) -----> <------ (1 mark) ----->

(Profits (billion \$) > 8.0) OR (Share price (\$) < 50.00)

<----> (1 mark) ----> <----- (1 mark) ----->

May/June 2013:

11 A survey of motorways was carried out and a database was produced. A section of the database is shown below.

Motorway ID	Length (km)	Cars per day	Toll charge per km (\$)	Number of lanes
M1	100	50 000	50 000 0.60	
M2	210	75 000	75 000 0.40	
M3	180	60 000	60 000 0.50	
M4	40	20 000	0.30	3
M5	25	15 000	0.10	2
M6	100	40 000	40 000 0.70	
M7	30	10 000 0.40		2
M8	150	60 000	0.60	4

(a) How many fields and how many records are shown?

(i) number of fields

(ii) number of records

(b) Using Motorway ID only, what would be output if the following search condition was used?

(Length (km) > 100) AND (Number of lanes > 3)

(c) What search condition is needed to find the motorways where the number of cars per day exceeds 50 000 or the toll charge per kilometre is greater than \$0.50?

Solution:

(a) (i) 5

(ii) 8

(b) M3 and M8 only

(c) (Cars per day > 50 000) OR (Toll charge per km (\$) > 0.50)

<----- (1 mark) ----> <------ (1 mark) ------>

Or

(Toll charge per km (\$) > 0.50) OR (Cars per day > 50 000)

<----- (1 mark) -----> <----- (1 mark) ----->

Oct/Nov 2013 P12:

3 A motor car manufacturer offers various combinations of

- seatcolours
- seat materials
- car paint colours

A database was set up to help customers choose which seat and paint combinations were possible seat material car paint colours

code	cloth	leather	seat	white	red	black	blue	green	silver	grey
			colour							
CB	Y	N	black	Y	Y	Y	Y	Y	Y	Y
LB	N	Y	black	N	Y	N	N	N	Y	Y
CC	Y	N	cream	N	Y	Y	Y	N	N	N
LC	N	Y	cream	N	Y	Y	Y	N	N	Y
CG	Y	N	grey	N	Y	Y	Y	Y	Y	N
LG	N	Y	grey	N	Y	N	Y	N	Y	Y
CR	Y	N	red	Y	N	Y	N	N	Y	Y
LR	N	Y	red	Y	N	Y	N	N	Y	Y
CL	Y	N	lime	N	N	N	Y	N	N	Ν
LL	N	Y	lime	N	N	Y	Y	Y	N	N

(NOTE: N = no, not a possible combination, Y = yes, combination is possible)

(a) How many records are shown in the database? [1]

(b) The following search condition was entered:

(cloth= "Y") AND (blue = "Y")

Using code only, which records will be found? [2]

(c) A customer wanted to know the possible combinations for a car with leather seats and either silver or grey paint colour.

What search condition would need to be input? [2]

(d) A customer decided to buy a green car. He wanted to know which seat colours and seat materials were not a possible combination with green paint.

What search condition would he need to enter? [1]

(e) Give one advantage of using the codes Y and N in the database rather than using Yes and No. [1]

Solution:

(a) 10/ten

Compiled By: Naqash Sachwani

Computer Science 2210

```
(b)
    CB, CC,
                  CG, CL
   <-1 mark -> <-1 mark ->
   (-1 mark for each additional item)
(c) (leather = "Y") AND (silver = "Y" OR grey = "Y")
   <-1 mark -> <-----1 mark ---->
   or
   (silver = "Y" OR grey = "Y") AND (leather = "Y")
   <----1 mark ----> <---- 1 mark ---->
   or
   (leather = "Y") AND ((silver = "Y") OR (grey = "Y"))
   <-1 mark -> <-----1 mark ---->
   or
   ((silver = "Y") OR (grey = "Y")) AND (leather = "Y")
   <----1 mark ----> <---- 1 mark ---->
(d) (green = "N")
(e) Any one from:
   - uses up less memory (NOT space)
   - faster to key in data/saves time when keying in data
```

- fewer mistakes made when keying in data

Oct/Nov 2013 P13:

9 A database was set up to keep track of goods in a shop. A section of the database is shown below.

Item code	Number in stock	Re-order level	Price of item (\$)	Value of stock (\$)	Items ordered
1113	155	200	1.50	232.50	Yes
1124	84	50	2.50	210.00	No
1200	30	60	5.00	150.00	Yes
1422	600	500	1.00	600.00	No
1515	90	100	2.00	180.00	No
1668	58	50	4.00	232.00	No
1801	60	100	8.00	480.00	No
1844	195	200	1.50	292.50	Yes

- (a) How many records are shown in this section of database? [1]
- (b) (i) Using Item code only, what would be output if the following search was carried out: (Number in stock <Re-order level) AND (Items ordered = "No") [2]
 - (ii) What useful information does this search produce? [1]

(c) Write a search condition to locate items costing more than \$2.00 or have a stock value exceeding \$300.00. [2]

Solution:

- (a) 8 (b) (i) 1515
- 1801

(-1 mark for each error)

- (ii) checks whether new goods have (yet) to be ordered
 to maintain stock levels
- (c) (Price of item (\$) > 2) OR (Value of stock (\$) > 300)

```
<---- 1 mark ----> <----- 1 mark ----> or
```

(Value of stock (\$) > 300) OR (Price of item (\$) > 2)

<-----1 mark -----> <----- 1mark ----->

May/June 2014 P11:

3 A hospital holds records of its patients in a database. Four of the fields are:

- date of visit (dd/mm/yyyy)
- patient's height (m)
- 8-digit patient ID

• contact telephone number

The presence check is one possible type of validation check on the data. For each field, give another validation check that can be performed. Give an example of data which would fail your named validation check.

A different validation check needs to be given for each field.

field name	name of validation check	example of data which would fail the validation check
date of visit		
patient's height		
patient ID		
contact telephone number		

Solution:

field name	name of validation check	example of data which would fail validation check	
date of visit	format check	e.g. 2012/12/04 e.g. 3rd March 2012	
patient's height	type/character check range check limit check	can't be < 0 or > 2.5m e.g. –5, five e.g. 8, -3,	
patient ID	type check length check range check	(can't be < 0 or > 999999999) e.g. 3142ABCD e.g. 2131451, 136498207 e.g3, 851341625	
contact telephone number	length check type/character check format check	e.g. 0773141621834 e.g. 7H215GD e.g. 01223/123456/8901234	

Compiled By: Naqash Sachwani

14 A database was set up showing statistics for some states in the USA. Part of the database is shown below.

Ref	Name of state	Population (millions)	Number of houses (millions)	Area (sq miles)	Density	Travel time to work (min)
OR	Oregon	3.8	1.6	96000	39.6	22.3
CO	Colorado	4.9	2.1	104000	47.1	24.3
NJ	New Jersey	8.7	3.5	7400	1175.7	30.0
TX	Texas	24.3	9.4	262000	92.7	25.4
CA	California	36.8	13.3	156000	235.9	27.7
FL	Florida	18.3	8.7	53900	339.5	26.2
AK	Alaska	0.7	0.3	572000	1.2	19.6
NV	Nevada	2.6	1.1	110000	23.6	23.3
NY	New York	19.5	7.9	47000	414.9	31.7

- (a) (i) How many records are in this section of the database? [1]
 - (ii) How many fields are in each record? [1]

(b) The following search condition was entered:

(Population (millions) < 4.0) OR (Number of houses (millions) < 4.0)

Using Ref only, write down which records will be found. [2]

(c) Write down the search condition to find out which states have an area over 100 000 square miles and where it takes less than 25 minutes to get to work. [2]

(d) (i) What should be the key field in this database? [1]

(ii) Give a reason for your choice.

Solution:

(a) (i) 9

- (ii) 7
- (b) OR, CO, NJ, AK, NV
- (-1 mark for each error: i.e. each omission, each incorrect additional item)
- (c) $(Area(sq miles) > 100\ 000)$ AND (Travel time to work (min) < 25)

<-----1 mark -----> <-----1 mark ----->

Or

(Travel time to work (min) < 25) AND (Area(sq miles) > 100 000)

- (i) Ref or Name of State
- (ii) this is unique to for each state

May/June 2015 P21

7 A database, PROPERTY, was set up to show the prices of properties for sale and the features of each property. Part of the database is shown below.

Compiled By: Naqash Sachwani

Property Type	Brochure No	Number of Bedrooms	Number of Bathrooms	Garden	Garage	Price in \$
Bungalow	B17	7	4	Yes	Yes	750,000
Apartment	A09	2	1	No	No	100,000
House	H10	4	2	Yes	No	450,000
House	H13	3	2	Yes	No	399,000
Apartment	A01	2	2	No	Yes	95,000
Apartment	A16	1	1	No	No	150,000
House	H23	3	1	No	Yes	250,000
House	H46	2	1	Yes	Yes	175,000

(a) Give the number of fields that are in each record. [1]

(b) State which field you would choose for the primary key.

Give a reason for choosing this field. [2]

(c) State the data type you would choose for each of the following fields.

Garage Number of Bedrooms

Price in \$[3]

(d) The query-by-example grid below selects all houses with more than 1 bathroom and more than 2 bedrooms.

Field:	Property Type	Number of Bedrooms	Number of Bathrooms	Price in \$	Brochure No
Table:	PROPERTY	PROPERTY	PROPERTY	PROPERTY	PROPERTY
Sort:				Ascending	
Show:				\checkmark	\checkmark
Criteria:	= 'House'	>2	>1		
or:					

Show what would be output. [2]

(e) Complete the query-by-example grid below to select and show the brochure number, property type and price of all properties with a garage below \$200,000.

Field:		
Table:		
Sort:		
Show:		
Criteria:		
or:		
		 [4]

Examiner Report Question 7

(a) Many candidates correctly identified the number of fields in each record.

(b) Most candidates correctly identified the field to choose for the primary key. Better candidates gave a correct reason for their choice.

(c) Nearly all candidates correctly stated at least one data type.

Compiled By: Naqash Sachwani

(d) Most candidates correctly showed only the Price in \$ and the Brochure No, as identified by the query-byexample grid. Better candidates showed attention to detail, by correctly putting the prices in ascending order and the Price in \$ field before the Brochure No field as indicated by the query-by-example grid.

(e) Most candidates correctly identified the fields to include in the query-by-example grid and identified those that were to be shown. A common error was to incorrectly set the criterion for the garage, when the data type had been set as a Boolean field in part (c).

Solu	ition:					
7	(a) – 7					[1]
	(b) – Broch	ure No				
	– Uniqu	ely identifies ead	ch property			[2]
	(c) Garage		 Boolean 			
	Number o	f Bedrooms	 Number/Inter 	eger/Single		
	Price in \$		 Number/Sin 	gle/Real/Currenc	y .	[3]
	(d) 399000	H13				
	450000	H10				[2]
	(e)			1	1	1
	Field:	Property Type	Garage	Price in \$	Brochure No	
	Table:	PROPERTY	PROPERTY	PROPERTY	PROPERTY	
	Sort:					
	Show:	Ø		Ø	Ø	
	Criteria:		True	< 200000		
	or:					

May/June 2015 P22

6 A database, MARKS, was set up to record the test results for a class of students. Part of the database is shown below.

Student Name	Class ID	Maths	English	Science	History	Geography
Paul Smith	0017	70	55	65	62	59
Ravi Gupta	0009	29	34	38	41	44
Chin Hwee	0010	43	47	50	45	52
John Jones	0013	37	67	21	28	35
Diana Abur	0001	92	88	95	89	78
Rosanna King	0016	21	13	11	27	15

(a) Give the number of fields that are in each record. [1]

(b) State which field you would choose for the primary key.

Give a reason for choosing this field. [2]

(c) The query-by-example grid below selects all students with more than 60 marks in History or more than 60 marks in Geography.

Field:	Student Name	History	Geography
Table:	MARKS	MARKS	MARKS
Sort:	Ascending		
Show:	\checkmark		
Criteria:		>60	
or:			>60

Show what would be output. [2]

(d) Complete the query-by-example grid below to select and show the student names only of all students with less than 40 marks in both Maths and English.

Field:		
Table:		
Sort:		
Show:		
Criteria:		
or:		
		 [3]

Examiner's comments on Question 6

(a) Many candidates correctly identified the number of fields in each record.

(b) Most candidates correctly identified the field to choose for the primary key. Better candidates gave a correct reason for their choice.

(c) Better candidates correctly showed only the student names as identified by the query-by-example grid. Some of these candidates correctly ordered the names in ascending order.

(d) Most candidates correctly identified the fields to include in the query-by-example grid and identified those that were to be shown. A common error was to set the Maths or English criteria to OR rather than AND, where both criteria are on the same row. 6

(a)	-7	[1]
(b)	– Class ID – Uniquely identifies each student	[2]
(c)	Diana Abur, Paul Smith – both names – correct order	[2]

(d)

()	r			1
Field:	Student Name	Maths	English	
Table:	MARKS	MARKS	MARKS	
Sort:				
Show:	Ø			
Criteria:		<40	<40	
or:				
	(1 mark)	(1 mark)	(1 mark)	[3]

Oct/Nov 2015 P22

6 A picture gallery owner has decided to set up a database to keep information about the pictures he has for sale. The database table, PICTURE, will contain the following fields:

Title; Artist; Description; Catalogue Number; Size (area in square centimetres); Price; Arrived (date picture arrived at gallery); Sold (whether picture is already sold)

(a) (i) State what data type you would choose for each field.

Title	
Artis	t
Desc	ription

	Catalogue Numb	er				
	Size					
	Price					
	Arrived					
	Sold				[4]	
(ii)	State which field	you would choose	e for the primary k	ey.		
(b)	Give a validation c must be different.	heck that you can	perform on each o	of these fields. Eac	[1] ch validation check	
	Catalogue Number					
	Size					
	Price					
	Arrived				[4]	
(c)	Complete the quer and Price of all uns	y-by-example grid old pictures by the	below to select ar artist 'Twister'.	nd show the Catalo	ogue Number, Title	
Field:						
Table:						
Sort:						
Show:						
Criteria:						
or:						

Examiners' Comments Question 6

(a) (i) Most candidates correctly identified the correct data type for some of the fields. Candidates who did less well throughout, incorrectly used data types from programming rather than database management.

(ii) Most candidates correctly identified the field to choose for the primary key.

(b) Many candidates correctly identified at least one suitable validation check. Candidates with stronger responses throughout identified four different checks; a few candidates incorrectly repeated a validation check.
(c) Many candidates correctly identified the fields to include in the query-by-example grid; stronger responses

identified

those fields that were to be shown. A common error was to not include the table name.

Solution:

6 (a) (i) One mark for every two correct types

Title	- text
Artist	- text
Description	 text/memo
Catalogue Number	 text/(auto)number
Size	- number
Price	 – currency/number
Arrived	- date
Sold	 - "yes/no"/text/Boolean
0, 1 no marks	
2, 3 one mark	
4, 5 two marks	
6, 7 three marks	
8 four marks	

[5]

[1]

- (ii) Catalogue Number
- (b) One mark for each correct different check

Catalogue Number	Format check/Presence Check/Check Digit/Length check/uniquen	ess
-	check	
Size	Type check/Presence Check/Range Check	
Price	Type check/Presence Check/Range Check	
Arrived	Type check/Presence Check/Range Check/Format check/Select fi	rom
	calendar length check	[4]

(c)

Field:	Catalogue Number	Title	Price	Artist	Sold
Table:	PICTURE	PICTURE	PICTURE	PICTURE	PICTURE
Sort:					
Show:	Ø	Ø	Ø		
Criteria:				='Twister'	False
or:					
	(1 mark)	(1 mark)	(1 mark)	(1 mark)	(1 mark)

Oct/Nov 2015 P23

5 A motor boat hire company decides to set up a database to keep information about boats that are available for hire. The database table, BOAT, will contain the following fields:

Boat Name; Model; Engine Power (in hp); Number of Seats; Life Raft (whether there is a life raft kept on the boat); Day Price (price for a day's hire).

(a) Give the data type you would choose for each field.

	Boat Name
	Model
	Engine Power
	Number of Seats
	Life Raft
(b)	Day Price[3] State a validation check that you can perform on each of these fields. Each validation check must be different.
	Boat Name
	Model
	Number of Seats
(c)	Day Price[4] Complete the query-by-example grid below to select and show the Boat Name, Model and Day Price of a day's hire for all boats with 4 seats and an Engine Power of more than 100 hp.

Compiled By: Naqash Sachwani

Field:				
Table:				
Sort:				
Show:				
Criteria:				
or:				
Solution 5 One Boa Moe Eng Nur Life Day 0, 1	n: e mark for every t at Name del gine Power mber of Seats e Raft y Price no marks	wo correct types – text – text – number – number – "yes/no"/text – currency/nur	t/Boolean mber	[3]

2, 3 one mark

4, 5 two marks

6 three marks

[3] (b) One mark for each correct different check Boat Name Presence Check/Type Check/Character Check Model Format check/Type check/Presence Check/Length check/ Use of Drop-down box to select Number of Seats Type check/Presence Check/Range Check/ Use of Drop-down box to select Day Price Type check/Presence Check/Range Check [4]

(c)

Field:Boat NameModelDay PriceNumber of SeatsEngine PowerTable:BOATBOATBOATBOATBOATSort:Image: SourceImage: SourceImage: SourceImage: SourceImage: SourceShow:Image: SourceImage: SourceImage: SourceImage: SourceImage: SourceCriteria:Image: SourceImage: SourceImage: SourceImage: SourceImage: Source(1 mark)(1 mark)(1 mark)(1 mark)(1 mark)Image: Source	9						
Table:BOATBOATBOATBOATBOATSort: \square \square \square Show: \blacksquare \blacksquare \blacksquare \square Criteria: \square \blacksquare $= 4$ > 100or: $(1 mark)$ $(1 mark)$ $(1 mark)$ $(1 mark)$		Field:	Boat Name	Model	Day Price	Number of Seats	Engine Power
Sort: Image: Constraint of the system Image: Constraint of		Table:	BOAT	BOAT	BOAT	BOAT	BOAT
Show: Ø Ø O O Criteria: = 4 > 100 or: (1 mark) (1 mark) (1 mark) (1 mark) (1 mark) (1 mark)		Sort:					
Criteria: = 4 > 100 or: (1 mark) (1 mark) (1 mark)		Show:	Ø	Ø	Ø		
or: (1 mark) (1 mark) (1 mark) (1 mark) (1 mark)		Criteria:				= 4	> 100
(1 mark) (1 mark) (1 mark) (1 mark) (1 mark)		or:					
		I	(1 mark)	(1mark)	(1 mark)	(1 mark)	(1 mark)

May/June 2016 P21

6 A database, STAFFPHONE, was set up to show the telephone extension numbers for members of staff working in a department store.

Name	Department	Extension number
Jane Smith	Toys	129
Sue Wong	Books	124
David Chow	Toys	129
Amy Tang	Household	123
Joe Higgs	Books	124
Jane Smith	Shoes	125
Adel Abur	Shoes	125
Peter Patel	Toys	129

Compiled By: Naqash Sachwani

(a) Explain why none of the fields in the database can be used as a primary key. [2]

(b) State a field that could be added as a primary key.

Give a reason for choosing this field. [2]

(c) Use the query-by-example grid below to provide a list of all members of staff, in alphabetical order, grouped by department. [5]

Field:		
Table:		
Sort:		
Show:		
Criteria:		
or:		

Solution:

(a) - all (fields) have (1 mark) duplicate entries (1 mark)

- none (of the fields) (1 mark) have unique entries(1 mark)

(b) - e.g. StaffNumber

- Uniquely identifies each member of staff//no duplicates//different for each member of staff

(c)

Field:	Department	Name				
Table:	STAFFPHONE	STAFFPHONE				
Sort:	Ascending	Ascending				
Show:	Ø	Q				
Criteri a:						
or:						
	(2 marks)	(2 marks) (1 mark for correct order and number of field				

May/June 2016 P22

7 A database, SOFASELECT, was set up to show the prices of suites, sofas and chairs for sale from an online furniture warehouse. Part of the database is shown below.

Description	Brochure Number	Number of Seats	Number of Pieces	Material	Colour	Price in \$
Sofa	SF17	2	1	Leather	Red	950
Sofa	SF19	3	1	Vinyl	Black	1,000
Suite	SU10	4	3	Velvet	Green	1,500
Suite	SU23	5	3	Leather	Brown	950
Recliner chair	RC01	1	1	Leather	Cream	600
Chair	CH16	1	1	Vinyl	Red	250
Recliner sofa	RS23	4	1	Leather	Cream	1,200
Chair	CH10	1	1	Velvet	Red	175

(a) How many fields are in each record? [1]

(b) State which field you would choose for the primary key. [2]

Give a reason for choosing this field.

(c) State the data type you would choose for each of the following fields.

Number of Seats.....

Price in \$.....[2]

(d) The query-by-example grid below selects all the furniture in cream leather.

Field:	Description	Material	Colour	Price in \$	Brochure Number
Table:	SOFASELECT	SOFASELECT	SOFASELECT	SOFASELECT	SOFASELECT
Sort:				Descending	
Show:	\checkmark			\checkmark	\checkmark
Criteria:		= 'Leather'	= 'Cream'		
or:					

Show the output from the query-by-example. [3]

(e) Complete the query-by-example grid below to select and show the brochure number, material, colour and price of all the furniture with 3 or more seats. [5]

Field:								
Table:								
Sort:								
Show:	Show:							
Criteria:								
or:								
Solution: 7 (a) –	ution: (a) – 7 [1]							
(b) — —	Brocr	nure Number. Iniquely ident	ifies each re	ecord/each	Brochure Numb	er different/no dupli	cates [2]	
(c) – –	 Number of Seats – number/integer Price in \$ – currency/real 							
(d) 1	mark	for each corr	ect result, 1	mark for th	ne results in desc	cending order of prio	ce	
-	 Recliner sofa 1,200 RS23 Recliner chair 600 RC01 [3] 							
(e)	(e)							
Fie	Field: Brochure Number Material Colour Price in \$ Number of Seats						Number of Seats	
Table: SOFASELECT SOFASELECT SOFASELECT SOFASELECT SOFASEL						SOFASELECT		
Sor	rt:							
Sho	ow:	V	M		A	M		
					1			

Oct/Nov 2016 P22

Criteria:

or:

5 A database, PLAYPRODUCTION, was set up to show the performance dates, prices and number of seats available at a theatre specialising in Shakespeare productions.

>2

Compiled By: Naqash Sachwani

Play	Performance Date	Number Seats Stalls	Number Seats Circle	Price Stalls Seats \$	Price Circle Seats \$
As You Like It	01/07/2016	120	90	20.00	30.00
As You Like It	02/07/2016	85	45	30.00	40.00
As You Like It	09/07/2016	31	4	30.00	40.00
Macbeth	14/07/2016	101	56	25.00	35.00
Macbeth	15/07/2016	50	34	25.00	35.00
Macbeth	16/07/2016	12	5	35.00	50.00
Julius Caesar	22/07/2016	67	111	20.00	20.00
Julius Caesar	23/07/2016	21	24	15.00	15.00
A Comedy of Errors	30/07/2016	45	36	35.00	45.00

(a) Give the number of fields that are in each record. [1]

(b) State the data type you would choose for each of the following fields.

Play.....

(c) The query-by-example grid below selects all the productions with more than 100 seats left in either the stalls or the circle.

Field:	Play	Performance Date	Number Seats Stalls	Number Seats Circle
Table: PLAYPRODUCTION		PLAYPRODUCTION	PLAYPRODUCTION	PLAYPRODUCTION
Sort:	Ascending			
Show:	 ✓ 	 Image: A start of the start of		
Criteria:			> 100	
or:				> 100

Show what would be output from the query-by-example. [3]

text

number

currency

(d) Complete the query-by-example grid below to select all the productions with at least six seats left in the circle and show the Play, Performance Date and Price Circle Seats \$ in Performance Date order.

Solution:

5 (a) – 6

(b) – Plav

– Play – No Seats Stalls

Price Stalls Seats \$

[3]

[1]

Compiled By: Naqash Sachwani

(c) 1 mark for correct plays, 1 mark for correct dates with each play and no extra fields or text, 1 mark for the order

ton, i mark for	
As You Like It	01/07/2016
Julius Caesar	22/07/2016
Macbeth	14/07/2016

(d)

Field:	Play	Performance Date	Number Seats Circle	Price Circle Seats \$
Table:	PLAYPRODUCTION	PLAYPRODUCTION	PLAYPRODUCTION	PLAYPRODUCTION
Sort:		Ascending/ Descending		
Show:	Ø	Ø		Ø
Criteria:			>=6	
or:				
	(1 mark)	(1 mark)	(2 marks) 1 for Criteria 1 for correct Field & Table & Sort & Show & or	(1 mark)
				[5]

Oct/Nov 2016 P23

6 A database, THEATRETOURS, was set up to show the tour dates, towns, number of seats and prices in local currency for a Shakespeare play.

Town	Tour Date	Number of Seats	Price Local Currency
Wigan	18/08/2016	120	15.00
Dumfries	20/08/2016	160	12.50
Turin	25/08/2016	200	17.00
Macon	27/08/2016	75	18.00
Bordeaux	29/08/2016	170	20.00
Algiers	01/09/2016	125	1350.00
Windhoek	05/09/2016	65	90.00
Windhoek	06/09/2016	65	90.00
Port Elizabeth	10/09/2016	200	110.00

(a) Explain why none of the fields in the database can be used as a primary key. [2]

(b) State a field that could be added as a primary key.

Give a reason for choosing this field. [2]

(c) Use the query-by-example grid below to provide a list of tour dates and seat prices in alphabetical order of town. [4]

Field:		
Table:		
Sort:		
Show:		
Criteria:		

- Town has duplicate entries/all fields can have duplicate entries (a) –
 - fields other than Town not suitable identifiers

[2]

[2]

- (b) Performance number …
- ... uniquely identifies each performance

(c)

6

Field:	Town	Tour Date	Price Local Currency	
Table:	THEATRETOURS	THEATRETOURS	THEATRETOURS	
Sort:	Ascending			
Show:	Ø	Ø	Ø	
Criteria:				
or:				
mark for	each column + 1 mar	k for correct fields only	/	[4]

1 mark for each column + 1 mark for correct fields only

May/June 2017 P21

7 A television (TV) store has a database table, TVSTOCK, for its new range of televisions. The table stores the screen size of each TV, whether it will show 3D, whether the screen is curved or flat, if the internet is available on the TV, if it has a built-in hard disk drive and the price. Part of the database table is shown below.

TVID	ScreenSize	3D	CurvedFlat	Internet	HDD	Price
TV80CVINT	80	YES	CV	YES	YES	\$7,000.00
TV65CVINT	65	YES	CV	YES	YES	\$5,000.00
TV60CVINT	60	YES	CV	YES	YES	\$4,500.00
TV60FTINT	60	YES	FT	YES	YES	\$4,000.00
TV55CVINT	55	YES	CV	YES	NO	\$3,000.00
TV55FTINT	55	YES	FT	YES	NO	\$3,500.00
TV55FTNIN	55	YES	FT	NO	NO	\$3,000.00
TV50CVINT	50	YES	CV	YES	NO	\$2,500.00
TV50FTINT	50	YES	FT	YES	NO	\$2,000.00
TV50FTNIN	50	YES	FT	NO	NO	\$1,750.00
TV42FTINT	42	YES	FT	YES	NO	\$1,500.00
TV37FTINT	37	NO	FT	YES	NO	\$1,200.00
TV20FTNIN	20	NO	FT	NO	NO	\$800.00
TV15FTNIN	15	NO	FT	NO	NO	\$400.00

(a) State the type of the field TVID and give a reason for your choice. [1] (b) Complete the table with the most appropriate data type for each field. [3]

Field name	Data type
ScreenSize	
3D	
CurvedFlat	
Internet	
HDD	
Price	

Compiled By: Naqash Sachwani

(c) Use the query-by-example grid below to provide a list of all of the curved screen TVs that have a built-in hard disk drive. Make sure the list only displays the TVID, the price and the screen size in ascending order of price.

Field:			
Table:			
Sort:			
Show:			
Criteria:			

Solution:

7(a)	Any one from: - It is the primary key/key field with unique data - (Fixed length) text field with alphanumeric data							
7(b)	Fie	Field name Data type						
	Sci	reenSize	Number					
	3D Boolean							
	Cu	rvedFlat	Text					
	Inte	ernet	Boolean					
	HD	D	Boolean					
	Pri	ce	Currency					
	1 mark fo	or every two o	o correct data types					
7(c)	Field:	TVID	ScreenSize	CurvedFlat	HDD	Price		
	Table:	TVSTOCK	TVSTOCK	TVSTOCK	TVSTOCK	TVSTOCK		
	Sort:					Ascending		
	Show:	☑				☑		
	Criteria:			="CV"	YES			
	or:							

May/June 2017 P22

5 A database table, SHEEP, is used to keep a record of the sheep on a farm. Each sheep has a unique ear tag, EARnnnn; n is a single digit. The farmer keeps a record of the date of birth, the gender and the current weight of each sheep in kilograms.

(a)Identify the four fields required for the database. Give each field a suitable name and data type. Provide a sample of data that you could expect to see in the field.

Compiled By: Naqash Sachwani

(b) State the field that you would choose as the primary key. [1]

(c) Using the query-by-example grid below, write a query to identify the ear tags of all male sheep weighing over 10 kilograms. Only display the ear tags. [3]

Field:		
Table:		
Sort:		
Show:		
Criteria:		
or:		

Solution:

5(a)	 for each field name (1), data type and sample (1) The following are examples there are many different correct answers. EarTag (1), text, EAR1011 (1) DOB (1), date, 4/3/2017 (1) Gender (1), text, M (1) Weight (1), number, 5.9 (1) 					
5(b)	EarTag					
5(c)	Field:	EarTag	Gender	Weight		
	Table:	SHEEP	SHEEP	SHEEP		
	Sort:					
	Show:	☑				
	Criteria:		='M'	> 10		
	or:					

Oct/Nov 2017 P22

6 A database table, TRAIN, is to be set up for a railway company to keep a record of the engines available for use. Each engine has a unique number made up of 5 digits, nnnnn. The engines are classified as freight (F) or passenger (P) together with a power classification that is a whole number between 0 and 9, for example F8. The railway company keeps a record of the date of the last service for each engine.

(a)Identify the three fields required for the database. Give each field a suitable name and data type. Provide a sample of data that you could expect to see in the field.

Field 1 Name	••••
Data type	
Data sample	
Field 2 Name	••••
Data type	
Data sample	
Field 3 Name	
Data type	

Compiled By: Naqash Sachwani

Data sample[6]

(b) State the field that you should choose as the primary key. [1]

(c) Using the query-by-example grid below, write a query to identify all passenger engines that have not been serviced in the past 12 months. Only display the engine numbers. [3]

Field:		
Table:		
Sort:		
Show:		
Criteria:		
or:		

Solution:

0014110	•••									
6(a)	-	1 mark for	mark for each field suitable name, 1 mark for appropriate data type and appropriate data sample							
		The follow	ing are examples the	ere are many different	correct answers.					
		– Engin – Class – Servio	 Engine Number, text, 21012 Class, text, P6 Service Date, date, 4/3/2017 							
6(b)	-	Engine Nu	Imber // Correct field	number						
6(c)										
0(0)		Field:	Engine Number	Class	Service Date					
		Table:	TRAIN	TRAIN	TRAIN					
		Sort:								
		Show:	Ŋ							
		Criteria:		Like 'P*' // Like 'P?'	<10/11/2016					
		or:								

Oct/Nov 2017 P23

6 A wildlife park has a database table, called LIVESTOCK, to classify and record its animal species. Part of the database table is shown.

Species	Classification	Diet	Legs
Giraffe	Mammal	Herbivore	4
Elephant	Mammal	Herbivore	4
Crocodile	Reptile	Carnivore	4
Ostrich	Bird	Omnivore	2
Gorilla	Mammal	Herbivore	2
Bear	Mammal	Omnivore	4
Rhinoceros	Mammal	Herbivore	4
Hippopotamus	Mammal	Herbivore	4
Flamingo	Bird	Omnivore	2
Lion	Mammal	Carnivore	4
Turtle	Reptile	Omnivore	4
Penguin	Bird	Carnivore	2

(a)Suggest another appropriate field that could be added to this database by stating its name and data type. State its purpose and give an example of the data it could contain.

Compiled By: Naqash Sachwani

Field na	me	•••••						•••••	
Data Ty	ре						•••••	•••••	
Purpose				••••••		•••••	••••••		
Example	e of data							[2]	
(b) Use	the quer	y-by-examp	le grid below	to provide a l	ist of all four-	legg	ed mammals	s that are	
herbivo	res, sort	ed alphabet	ically by speci	es, with only	the species d	spla	yed. [4]		
Field:									
Table:									
Sort:									
Show:								1	
Criteria:								1	
or:								1	
Solutior	n:							,	
6(a)	1 mark fo 1 mark fo	or any sensibl or data type, p	e appropriate fie urpose + example	eld name e data					
	Example Field Nar Data Typ Purpose: Example	1: me: SPEC ve: Alpha Prima Data: SP06	EIESID numeric ry key 583						
	Example 2: Field name: NUMBER Data Type: Integer Purpose: To record how many of that species there are at the park Example Data: 30								
6(b)			1	1	1				
	Field:	Species	Classification	Diet	Legs				
	Table:	LIVESTOCK	LIVESTOCK	LIVESTOCK	LIVESTOCK				
	Sort:	Ascending/ Descending							
	Show:	Ø							
	Criteria:		"Mammal"	"Herbivore"	4				
	or:]		

May/June 2018 P21

6 A database table, PERFORMANCE, is used to keep a record of the performances at a local theatre.

Show Number	Туре	Title	Date	Sold Out
SN091	Comedy	An Evening at Home	01 Sept	Yes
SN102	Drama	Old Places	02 Oct	No
SN113	Jazz	Acoustic Evening	03 Nov	No
SN124	Classical	Mozart Evening	04 Dec	Yes
SN021	Classical	Bach Favourites	01 Feb	Yes
SN032	Jazz	30 Years of Jazz	02 Mar	Yes
SN043	Comedy	Street Night	03 Apr	No
SN054	Comedy	Hoot	04 May	No

(a)State the number of fields and records in the table.

Compiled By: Naqash Sachwani

(b) Give two validation checks that could be performed on the Show Number field. [2]

(c) Using the query-by-example grid, write a query to identify jazz performances that are not sold out. Only display the date and the title. [4]

Field:			
Table:			
Sort:			
Show:			
Criteria:			
or:			

Solution:

6(a)	Fields Records	5 8					
6(b)	Any two from: Length check Type check Presence check Format check						
6(c)	Field:	Туре	Sold Out	Date	Title		
	Table:	PERFORMANCE	PERFORMANCE	PERFORMANCE	PERFORMANCE		
	Sort:						
	Show:						
	Criteria:	Like "Jazz"	False				
	or:						

May/June 2018 P22

6 A database table, TREES, is used to keep a record of the trees in a park. Each tree is given a unique number and is examined to see if it is at risk of dying. There are over 900 trees; part of the database table is shown.

Tree Number	Туре	Map Position	Age in Years	At Risk
TN091	Acacia	A7	250	Y
TN172	Olive	C5	110	N
TN913	Cedar	B9	8	N
TN824	Banyan	A3	50	Y
TN021	Pine	D5	560	Y
TN532	Teak	C8	76	Y
TN043	Yew	B1	340	N
TN354	Spruce	D4	65	N
TN731	Elm	B10	22	Y
TN869	Oak	C9	13	N
TN954	Pine	E11	3	N

(a) State the number of fields in the table. [1]

(b) The tree numbering system uses TN followed by three digits. The numbering system will not work if there are over 1000 trees.

Describe, with the aid of an example, how you could change the tree numbering system to allow for over 1000 trees. Existing tree numbers must not be changed. [2]

(c) Using the query-by-example grid, write a query to identify at risk trees over 100 years old. Display only the type and the position on the map. [4]

Field:			
Table:			
Sort:			
Show:			
Criteria:			
or:			

Solution:

6(a)	Fields	5					
6(b)	One mark description of new code that will allow more than 1000 values One mark for example matching candidate's description						
	Example Use a new character instead of N TT345						
6(c)	Field:	At Risk	Age in Years	Туре	Map Position		
	Table:	TREES	TREES	TREES	TREES		
	Sort:						
	Show:			Ø	☑		
	Criteria:	True	>100				
	or:						

Oct/Nov 2018 P23

6 An online fruit tree specialist sells fruit trees in various sizes. A database table, TREETAB, shows the tree type and, for each size, the price and whether they are in stock.

Тгее Туре	Size1	Size1 In	Size2	Size2 In	Size3	Size3 In
Apple	10.95	Yes	14.95	Yes	29.95	Yes
Apple	12.95	Yes	14.95	Yes	29.95	Yes
Cherry	24.95	No	34.95	No	59.95	Yes
Fig	19.95	Yes	29.95	No	49.95	Yes
Guava	19.95	No	29.95	No	59.95	No
Nectarine	8.50	Yes	11.95	Yes	19.95	Yes
Olive	19.95	No	39.95	Yes	59.95	Yes
Peach	9.25	No	11.95	Yes	19.95	Yes
Pear	10.95	Yes	14.95	Yes	29.95	Yes
Plum	8.95	Yes	11.95	Yes	19.95	Yes
Pomegranate	12.95	No	18.95	Yes	34.95	No
Quince	34.95	Yes	44.95	Yes	84.95	No

(a)State whether any of the fields shown would be suitable as a primary key. Explain your answer [2]

Compiled By: Naqash Sachwani

(b) Complete the table to show the most appropriate data type for each of the fields based on the data shown in the table at the start of question 6.

Field	Data type
Tree Type	
Size3	
Size2 In	

(c) Show the output that would be given by this query-by-example.

Field:	Tree Type	Size1	Size1 In	
Table:	TREETAB	TREETAB	TREETAB	
Sort:		Descending		
Show:	 ✓ 	✓	✓	
Criteria:		<10.00		
or:				

(d) Using the following query-by-example grid, write a query to identify all types of the fruit trees that are out of stock for all three sizes. Make sure the type of the tree and the various 'in stock' fields are shown. The trees should be listed in alphabetical order by type.

Field:				
Table:				
Sort:				
Show:				
Criteria:				
or:				[4]
		-		[+]

Solution:

6(a)	 1 mark for correct answer: No 1 mark for correct explanation: No field in this table contains unique identifier 						
6(b)	1 mark for each correct answe	rk for each correct answer					
		Field	Data type				
		Tree Type	Text				
		Size3	Number				
		Size2 In	Boolean/Text				
6(c)	1 mark for each correct row (r 1 mark for the correct order	nax 3) and					
	Peach 9.25 No Plum 8.95 Yes Nectarine 8.50 Yes						

6(d)	 1 mark correct Fields included 1 mark correct Table and Show on all the four fields required 1 mark for correct Sort, must be ascending 1 mark for correct Criteria for the four fields 						
	Field:	Tree Type	Size1 In	Size2 In	Size 3 In		
	Table:	TREETAB	TREETAB	TREETAB	TREETAB		
	Sort:	Ascending					
	Show:	M	V	Ŋ	V		
	Criteria:		=No	=No	=No		
	or:						

Oct/Nov 2018 P22

6 A database table, PORTRAIT, is used to keep a record of the portraits available from a photographic studio. Each portrait has a unique reference number PICnnn, where n is a single digit, for example PIC123. The studio keeps a record of the size (for example 20 × 15), the type (black and white or colour), and the price in dollars.

(a) Complete the table to show the most appropriate data type for each of the fields.

Field	Data type
Reference Number	
Size	
Туре	
Price in \$	

(b) The results from the query-by-example grid should show the reference number, price, type and size of all portraits under \$50. Identify the three errors in the query-by-example grid.

Field:	Reference No	Price in \$	Туре	Size
Table:	PORTRAIT	PORTRAIT	PORTRAIT	PORTRAIT
Sort:				
Show:	✓	 ✓ 		✓
Criteria:		>50.00		
or:				

Solution:

6(a)	Many correct answers, an example is given. 1 mark for each correct row (max 4).					
		Field	Data type			
		Reference Number	Text			
		Size	Text			
		Туре	Text/Boolean			
		Price in \$	Number/Currency			
6(b)	1 mark per bullet:					
	Incorrect field name for Reference Number					
	Incorrect criteria for Price in \$ should be <					
	L Type not checked					
May/June 2019 P21

5 The table, BEVERAGES, shows the number of calories in 100 ml of a range of popular beverages. It also shows the availability of these drinks in a can, a small bottle and a large bottle.

BevNo	BevName	Calories	Can	Small Bottle	Large Bottle
Bev01	Cola	40	Yes	Yes	Yes
Bev02	Lime	45	Yes	No	Yes
Bev03	Energy Drink 1	52	Yes	Yes	No
Bev04	Energy Drink 2	43	Yes	No	No
Bev05	Mango	47	Yes	No	Yes
Bev06	Lemon Iced Tea	38	Yes	No	Yes
Bev07	Lemonade	58	Yes	Yes	Yes
Bev08	Orange Juice	46	Yes	Yes	No
Bev12	Apple Juice	50	Yes	Yes	No
Bev15	Chocolate Milk	83	Yes	Yes	No

(a) Give a reason for choosing BevNo as the primary key for this table. [1]

(b) State the number of records shown in the table BEVERAGES. [1]

(c) List the output that would be given by this query-by-example.

Field:	BevNo	BevName	Can	Small Bottle	Large Bottle	
Table:	BEVERAGES	BEVERAGES	BEVERAGES	BEVERAGES	BEVERAGES	
Sort:		Descending				
Show:	✓	✓				
Criteria:			= "Yes"	= "Yes"	= "Yes"	
or:						[2]

(d) Complete the query-by-example grid to output a list showing just the names and primary keys of all the beverages with a calorie count greater than 45. The list should be in alphabetical order of names.

Field:				
Table:				
Sort:				
Show:				
Criteria:				
or:				[4]
Solutio	n:			[4]

5(a)	Each data value is unique
5(b)	10 records

5(c)	Bev07 Bev07	7 Lemor 1 Cola	ade				
	1 mark for each correct content 1 mark for each correct format 1 mark for correct order						
5(d)	Field:	BevNo	BevName	Calories			
	Table:	BEVERAGES	BEVERAGES	BEVERAGES			
	Sort:		Ascending				
	Show:	Ø	Ø				
	Criteria:			>45			
	or:						
	1 mark for correct Field row 1 mark for Table and Sort rows 1 mark for correct Show row 1 mark for correct Criteria rows						

May/June 2019 P22

6 A database table, FLIGHT, is used to keep a record of flights from a small airfield. Planes can carry passengers, freight or both. Some flights are marked as private and only carry passengers.

Flight number	Plane	Notes	Departure time	Passengers
FN101	Caravan 1	Private passenger flight	08:00	Y
CN101	Caravan 2	Freight only	08:30	N
CN102	Piper 1	Freight only	09:00	N
FN104	Piper 2	Passengers only	09:20	Y
FN105	Piper 1	Freight and passengers	10:00	Y
FN106	Caravan 1	Passengers only	10:30	Y
CN108	Caravan 2	Freight only	08:00	N
CN110	Lear	Private passenger flight	08:00	Y

(a)State the field that could have a Boolean data type. [1]

(b) A query-by-example has been written to display just the flight numbers of all planes leaving after 10:00 that only carry passengers.

Field:	Flight number	Passengers	Departure time	
Table:	FLIGHT	FLIGHT	FLIGHT	
Sort:				
Show:		 Image: A start of the start of		
Criteria:		= Y	= 10:00	
or:				

Explain why the query-by-example is incorrect, and write a correct query-by-example. Explanation

Compiled By: Naqash Sachwani

Field:			
Table:			
Sort:			
Show:			
Criteria:			
or:			[7]
			[,]

Solution:

6(a)	Passenger	S					
6(b)	Explanation Three from: Flight number not displayed Passengers displayed when should not be Departure time = not > "Freight and passengers" flight not excluded Revised QBE – answers shown are examples only mark per bullet correct field and table names (either 3 or 4 columns) must include Notes, Flight number and Departure time correct show correct time criteria for the candidate's QBE grid use of criteria to select planes with passengers only Eield: Elight number Passengers. Departure time						
	Field: Flight number Passengers Departure time Notes			Notes			
	Table:	FLIGHT	FLIGHT	FLI	GHT	FLIGHT	
	Sort:						
	Show:	$\mathbf{\nabla}$]		
	Criteria:		=Y	>1():00	<> "Freight and passengers"	
	or:						
	OR Field:	Elight number	Dopartu	o timo		Notos	
	Table:	ELICUT				ELIGHT	
	Sort		FLIG				
	301.	<u> </u>	+				
	Show:						
	Criteria:		>10:	00	= "P	assengers only"	
	or:		>10:	00	="Pr	ivate passenger flight"	

Oct/Nov 2019 P22

7 A database table, SALES, is used to keep a record of items made and sold by a furniture maker.

Compiled By: Naqash Sachwani

Item number	Order number	Notes	Amount	Status
CH001	1921	Smith – six dining chairs	6	Delivered
TB003	1921	Smith – large table	1	In progress
CH001	1924	Hue – extra chairs	4	In progress
CH003	1925	For stock	2	Cancelled
BN001	1927	Patel – replacement bench	1	Not started
ST002	1931	Sola – small table	1	Delivered
CH003	1927	Patel – eight dining chairs with arms	8	Not started
TB003	1927	Patel – large table	1	Not started

(a) Explain why the field Item number could not be used as a primary key. [1]

(b) A query-by-example has been written to display only the order number and item numbers of any items in progress or not started.

Field:	Item number	Order number	Amount	Status
Table:	SALES	SALES	SALES	SALES
Sort:				
Show:		 Image: A start of the start of	 Image: A start of the start of	
Criteria:				Not Like "Delivered"
or:				

Explain why the query-by-example is incorrect, and write a correct query-by-example. Explanation

Field:			
Table:			
Sort:			
Show:			
Criteria:			
or:			[5]

Solution:

7(a)	Number is repeated/not unique							
7(b)	 Item number not displayed/Amount column not required Not Like 'Delivered' will also show cancelled items 							
	Field:	Item number	Order number	Status				
	Table:	SALES	SALES	SALES				
	Sort:							
	Show:	$\overline{\mathbf{A}}$	V					
	Criteria:			Like "Not started"				
	or:			Like "In progress"				
	 Correct Item number column Correct Order number column and any additional column not shown Correct status column 							

Oct/Nov 2019 P23

7 A teacher has decided to use a database table as her mark book for her Computer Science class, which she has called MARKBOOK. For each student, the following data will be recorded: first name, last name, their year 10 test score and their year 11 test score. The class has 32 students.

(a)State the number of fields and records required for this database.

Number of Fields

(b) The data in MARKBOOK is stored under category headings: LastName, FirstName, Y10TestScore and Y11TestScore.

State, with a reason, whether any of these headings would be suitable as a primary key. [2]

(c) Complete the query-by-example grid to only display the first name, last name and year 10 test score of each student who achieved 50 or more in their year 10 test. The output should be in test score order with the highest marks at the top of the list.

Field:		
Table:		
Sort:		
Show:		
Criteria:		
or		

Solution:

7(a)	 Number of Fields: 4 Number of Records: 32 								
7(b)	 No fie be 	 No field is suitable as a primary key because none of the data would be unique // duplicates could occur 							
7(c)	Field:	FirstName	LastName	Y10TestScore					
	Table:	MARKBOOK	MARKBOOK	MARKBOOK					
	Sort:			Descending					
	Show:	V	V	V					
	Criteria:			>=50					
	or:								
	One mark for each completely correct column down to and including 'Show (maximum three marks) One mark for correct search criteria rows								