T 1 Characteristics of living organism	ns, Photosynthesis and carbon/nitroger	n cycles	Manu PapaCan.
Learning Outcomes	Suggested Teaching Activities	Online Resources	Other resources
I (a) Define the characteristic activities of iving organisms: nutrition, respiration, excretion, growth, response to stimuli,	Simple models and other analogies should be used with students to show that NON living things do show SOME of the	http://www.sambal.co.uk/mrs gren.html (MRS GREN).	Wind up toys, candles, P.Gadd pg 6-9
novement and reproduction	properties of life. E.g. wind up toy moves, candle flame needs oxygen. There may be a need to discuss some of the less obvious ones, like movement in plants. Time lapse of phototropism is good for this, or use a <i>Mimosa pudica</i> (sensitive plant). Students should be introduced to the idea of MNEMONIC (e.g. MRS GREN or GERMS N RCs, the former does not include 'made of cells', the latter does)	http://www.cornwallis.kent.sc h.uk/Primary%20Liason/Livin g%20things.ppt#3 A MRS GREN Power Point from Cornwallis School http://www.snv.jussieu.fr/bme dia/sensitive/mimosa5- 320.mov and http://www.dl.cc.va.us/srollins on/CR2002/16Jul-05.htm Movies of sensitive plant	D. Mackean pg 2-3
(b) Describe viruses as non-cellular, arasitic and reproducing only in living host ells	Students can be shown photographs of viruses, to show the very non-living look of them, but that they also complex.	http://www.dinofan.com/dfani mals/kingdoms/viruses/viruse s_main.aspx a picture of many virus types http://members.aol.com/aids acthsv/stdinfo.htm Picture of HIV	Pictures in Books P.Gadd pg 10; fig 3.1 and pg 166-167 fig 17.6 D. Mackean pg 2 and pg 200 fig 25.5 and 25.6
(c) Describe bacteria as unicellular, with a ell wall and DNA but no nucleus, some eing pathogenic and some non- athogenic and useful	Students can be shown photographs of bacterial types, many available on Internet. Also shown prepared slides of bacteria, esp. if a microscope camera facility is available. Good views of mouth bacteria can be seen in human cheek cell preparations	http://www.bioschool.co.uk/bi oschool.co.uk/images/pages/ cheek%20cell_JPG.htm Human cheek cell, stained with methylene blue, mouth bacteria visible as dark rods. http://ghs.gresham.k12.or.us/ science/ps/sci/soph/cells/pics /prokaryote1.gif A fairly simply labelled bacterium diagram.	P.Gadd pg 10; fig 3.2 and pg 167-171 fig 17.13 and 17.15 D. Mackean pg 2 and pg 199-200 fig 25.3 and 25.4

		http://www.ucmp.berkeley.ed u/bacteria/bacteria.html A fairly detailed Introduction to Bacteria	P.Gadd pg 10; fig 3.3 and	ne con
1(d) describe fungi as having a mycelium of threadlike hyphae, some being pathogenic and causing athlete's foot and ringworm (species of Tinea)	Students can be shown photographs of fungi; they can make a collection (best done in the Autumn in Europe). They can see live fungi growing on bread. (Plan ahead!!). One very good protocol is the one devised by NCBE to grow oyster mushrooms on a toilet roll, see online resources. Commercially available mushroom growing kits could be used as well. Photographs of fungal diseases could be shown.	http://www.ncbe.reading.ac.u k/NCBE/MATERIALS/MICR OBIOLOGY/oyster.html NCBE Oyster mushroom protocol. http://www.ucmp.berkeley.ed u/fungi/fungi.html Online Introduction to Fungi	P.Gadd pg 10; fig 3.3 and pg 171-172 fig 17.22 and 17.23 D. Mackean pg 2 and pg 200-201 fig 25.7	12
1 (e) Describe protozoa as unicellular animals, reproducing by fission, some forming gametes and spores and causing disease (malaria, caused by Plasmodium)	Students can be shown photographs and movies (see online links) of a variety of species.	http://sciences.aum.edu/bi/BI 2033/thomson/paramecium.h tml Introduction to Protozoa http://www.fcps.k12.va.us/Str atfordLandingES/Ecology/mp ages/amoeba.htm Lovely photos of Amoeba, incl. binary fission. http://sciences.aum.edu/bi/BI 2033/thomson/binaryfission.h tml Binary fission in Paramecium http://www.mic- d.com/gallery/moviegallery/p ondscum/protozoa/amoeba/ Movies of Amoeba here http://www.microscopy- uk.org.uk/index.html?http://w ww.microscopy- uk.org.uk/pond/protozoa.html Movies of movement in	P.Gadd pg 11 fig 3.5 and pg 198-199; fig 19.19, 19.20 and 19.21 and pg 172-173 fig 17.24 and 17.26 D. Mackean pg 2 and pg 201-202 fig 25.8	

			MMM. PapaCar
1 (f) Describe flatworms as multicellular animals, reproducing both sexually and asexually, with complex life histories involving at least two host organisms (blood fluke, Schistosoma)	Students can observe free living flatworms (Flatworms of the free living type can be easily found in freshwater streams.) Pathogenic flatworms can be observed by students in photographs, internet and textbooks.	ciliates <u>http://faculty.washington.edu/</u> <u>kepeter/118/photos/schistoso</u> <u>ma_life_cycle.jpg</u> Schistosoma life cycle diagram <u>http://www.dpd.cdc.gov/dpdx/</u> <u>HTML/Schistosomiasis.asp?</u> <u>body=Frames/S-</u> <u>Z/Schistosomiasis/body_Schi</u> <u>stosomiasis_page1.htm</u> and another	P.Gadd pg 11 and pg 173 fig 17.27 and 17.28 Fluke D. Mackean pg 204-206 fig 25.17 and pg 229 fig 29.25 and 29.28
1 (g) Describe insects as multicellular animals with exoskeletons, segmented bodies and jointed limbs, reproducing sexually, with life cycles involving several stages; some insects being vectors of disease (anopheline mosquito, housefly)	Students should examine a range of insects and observe the common features of their anatomy	http://www.earthlife.net/insect s/six.html World of Insects Home Page, much inside!	 P.Gadd pg 11 fig 3.7 and pg 196 fig 19.17-Mosquito and pg 194 fig 19.13-Housefly D. Mackean pg 245 fig 31.11 and 31.13 Housefly and pg 242 fig 31.4 Culex and fig 31.3 and Anopheles
1 (h) Describe the structure of animal and plant cells as composed of cytoplasm, cell membrane, cell wall (plant cells and bacteria only), nucleus and nuclear membrane Mount and examine under a microscope cells from a plant epidermis (e.g. onion bulb) and cells obtained by squashing a very small portion of fresh animal liver between a slide and cover slip	Students should prepare and observe animal and plant cell slides and draw their basic features that are visible	http://www.cartage.org.lb/en/t hemes/Sciences/Physics/Opt ics/OpticalInstruments/Micros cope/GlassSphere/GlassSph ere.htm#15 and another http://www.bbc.co.uk/schools /ks3bitesize/science/biology/li fecells1_2.shtml Plant and animal cells compared	P.Gadd pg 16-17 fig 4.3 and 4.4 and pg 20 Summary tables and pg 15-Practical fig 4.2 D. Mackean pg 6-8 fig 2.3 and pg 6 fig 2.2 and pg 13-Experiment 1+2 fig 2.11
1 (i) describe the functions of the cell membrane in controlling the passage of	Students should be given a sheet of the basic functions with gaps to fill in from text	http://www.iit.edu/~smile/bi95 08.html	P.Gadd pg 17-19 fig 4.10 explain osmosis and

 materials into and out of the cytoplasm 1 (j) Define and distinguish between diffusion and osmosis Carry out experiments to illustrate diffusion, (e.g. of colour diffusing into water as a coloured crystal dissolves) and osmosis (e.g. using Visking (dialysis) tubing as a membrane or using cells of onion epidermis or the large cells from the segment of a citrus fruit) 1 (k) Define active transport 	large beaker of clear water for good effect. This should be stood in an undisturbed place for a day or so. They should also see a demonstration of osmosis using visking tubing. Both of these practical needs writing up with explanation. A table comparing the two processes and active transport could be produced by the students with help from staff/internet or textbooks.	http://www.microscopy- uk.org.uk/dww/home/hombro wn.htm Downloadable movie of Brownian Motion http://www.bioschool.co.uk Link to plasmolysis time lapse movie http://www.biologycorner.co m/bio1/diffusion.html Shows an osmosis animation and links to active transport http://www.colorado.edu/eeb/ web_resources/osmosis/ Good osmosis animation http://www.colorado.edu/eeb/ web_resources/osmosis/	Pg 18 fig 4.9-Practical and pg 18-Practical fig 4.11 D. Mackean pg 22-23 fig 4.4, 4.5, 4.6 and 4.7 and pg 25 fig 4.12 and 4.9 – Osmosis P.Gadd pg 19 fig 4.12	Com
 1 (I) Describe the structure and functions of the following tissues: epithelium (lining of trachea and covering of villus), blood and bone 1 (m) Define the term organ with reference 	Students should be given a sheet explaining tissue/organ definition and examples to be filled in from text or internet	http://www.vicksburg.com/~la hatte/me/elbow/arminfo.jpg Good arm diagram with all the parts	P.Gadd pg 21-23 fig 4.13 pg 23-Summary table D. Mackean pg 10 fig 2.7(a) and pg 12 fig 2.10 D. Mackean pg 119-Arm fig	
to the arm: bone, muscle, cartilage, fibrous tissues (tendons and ligaments).	Students should engage in class	http://www.bbc.co.uk/schools	16.24 P.Gadd pg 100 fig 10.20- Summary table	

			4
			P.Gadd pg 43-44 fig 6.2 D. Mackean pg 42 D. Mackean pg 40-41 fig 7.2
primary producers of carbohydrate and protein	discussion as to what is obtained from plants, working round to acknowledging	/gcsebitesize/biology/plants/p hotosynthesishrev1.shtml	P.Gadd pg 43-44 fig 6.2
2 (b) Define photosynthesis as the production of carbohydrate from water and	their role as a provider of organic material. Notes on photosynthesis should be	Everything you need to know about Photosynthesis	D. Mackean pg 42
carbon dioxide, using light energy, in the presence of chlorophyll and with the release of oxygen	given/copied from text, to show the reactants and products.		D. Mackean pg 40-41 fig 7.2
2 (c) State the dependence of all living organisms, including humans, directly or indirectly on photosynthesis	Students should be shown a good few examples of food chains/webs and shown how ALL start with green plants (with a good group you might discuss deep sea	Food Chain/Web links http://www.life.uiuc.edu/bio10 0/lectures/s02lects/foodweb. gif	D. Mackean pg 57-Food chain
	vent ecosystems and how this exception proves the rule) Students could come up with these food chains for themselves.	http://www.starfish.govt.nz/sh ared-graphics-for- download/ocean- foodchain.gif	
		http://www.vtaide.com/png/fo odchains.htm	
		You can find many others with a Google image Search	
		http://www.ecokidsonline.co m/pub/eco_info/topics/frogs/c hain_reaction/index.cfm# A food chain game	
	A food chain game could be played with less able/less motivated/or just for fun!		
2 (d) Describe the carbon cycle in terms of the fixation of carbon from carbon dioxide in photosynthesis, its transfer as	The carbon cycle could be developed through a brain storm type of activity with students giving their own example of local	http://www.purchon.com/ecol ogy/carbon.htm Very useful interactive	P.Gadd pg 44-45 fig 6.3 pg 45-Summary table
carbohydrate to animals and its release back into the atmosphere as carbon dioxide, as a result of respiration	habitats. This can then be copied down into their notes	Carbon Cycle	D. Mackean pg 57-58 fig 9.5

			P.Gadd pg 45-46 fig 6.5 Pg 46-Summary table
2 (e) Describe the nitrogen cycle in terms of the uptake of nitrate ions from the soil by	Students can create this as with the carbon cycle being lead more by the teacher this	http://www.bbc.co.uk/schools /gcsebitesize/biology/ecology	P.Gadd pg 45-46 fig 6.5
green plants and the formation of plant	time to cover the more obscure aspects of	/nitrogencyclerev1.shtml	Pg 46-Summary table
protein, which is then eaten by animals	the cycle	Nitrogen cycle summary	
and converted to animal protein, broken		http://www.biology.ualberta.c	D. Mackean pg 51fig 8.2
down to urea and released as urine. This is		a/facilities/multimedia/index.p	
followed by the breakdown of urea and		hp?Page=280	
dead animal protein by bacteria and		Look for the downloadable	
conversion, by stages, to nitrate ions:		(and useful!) N cycle	
conversion of atmospheric nitrogen to		animation on this page, right	
nitrate ions by nitrogen-fixing bacteria		click and save target as to	
(names of specific bacteria are not		get it.	
required).			