WWW. Pap

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE O Level

MARK SCHEME for the November 2005 question paper

4037 ADDITIONAL MATHEMATICS

4037/01

Paper 1 maximum raw mark 80

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which Examiners were initially instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began. Any substantial changes to the mark scheme that arose from these discussions will be recorded in the published *Report on the Examination*.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the Report on the Examination.

CIE will not enter into discussion or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the November 2005 question papers for most IGCSE and GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

hbridge:com

www.PapaCambridge.com

Mark Scheme Notes

Marks are of the following three types:

- Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.
 B2/1/0 means that the candidate can earn anything from 0 to 2.

the scripts:

The following abbreviations may be used in a mark scheme or used on the scripts:

AG	Answer Given on the question paper (so extra checking is needed to
	ensure that the detailed working leading to the result is valid)

- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working

MR Misread

- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)

Penalties

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through √" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy.
- OW –1,2 This is deducted from A or B marks when essential working is omitted.
- PA –1 This is deducted from A or B marks in the case of premature approximation.
- S –1 Occasionally used for persistent slackness usually discussed at a meeting.
- EX –1 Applied to A or B marks when extra solutions are offered to a particular equation. Again, this is usually discussed at the meeting.

Page 1 Mark Scheme Syllabus GCE O Level – November 2005 4037			Mark.
GCE O Level – November 2005 4037	Page 1	Mark Scheme	Syllabus
	-	GCE O Level – November 2005	4037

				The same	
Page 1		cheme		Syllabus	3
	GCE O Level –	November	2005	4037	100
					S
1 (a) Squares a	and sets to 0		Condone algerro	rs in squaring but e	an ion.
$\rightarrow x^2 - 13x + 1$		M1	_	nd attempt at soluti	ion.
$\rightarrow x = 4$ and		Al	Independent of <	= or >	.6
$\rightarrow x < 4$ and		A1	Co – not for ≤ or	≥,	9
		[3]			
2 (-) (2) (I o D	B1			
2 (a) (i) A	$A' \cup B$ or $(A \cap B')'$	BI	Co		
(11) 7	· Ob or (ATTB)	[2]	Co		
(b) (i)	(ii)	. ,			
EA	A MADORE	B1 [1]	Co		
		B1 [1]	Со		
2					_
3 2(2x + 6/x) =	r+c-+				
$3x^2 - cx + 12$		мі	Fliminates v and	forms a quadratic e	ean.
Use of b^2 4a		M1	Uses b2-4ac=0 o		4
$\rightarrow c = 12$ and		A1	Co		
$\rightarrow c = -12$		Al√	For the -ve root	of c2=k.	
		[4]			
4	4-				
Length = $2-\sqrt{2}$		D.	0.		
Area = $(2-\sqrt{3})$	-	B1	Co		
Height = volu		м1	Used with volum	e and area	
$= (2\sqrt{3} - 3) + (2\sqrt{3} - 3) $		M1	Technique correc		
× top and bot → height = 3	tom by $7 + 4\sqrt{3}$	Al		cimal answers lead	ling
- neight - 3	. 213	[4]	to correct answer		
(or (7-4√3)(a	$a+b\sqrt{3}$) = $2\sqrt{3}-3$ Sim eqns			2	
	efore) M1 forming + sol A1)				
5 F(i+12j) at	(3i+2j). S (85i+5j) at -5i+kj				
A + +! +	- (1+20)+(12+20)		MIG		
	= (1+3t)i+(12+2t)j = (85-5t)i +(5+bt)i	M1 A1	M1 for one x or y	-	
	= (85-5t)i +(5+kt)j + 3t = 85 - 5t t = 10.5	MI AI		nponents correct. x components. A1	Co
	7 + 37 = 83 - 37 + 1 = 10.3 2 + 2t = 5 + kt	MIAI		y components. Al v	
Equate j 5 12		[6]	his t and his com		101
		[0]		Posterior	

		www
Page 2	Mark Scheme	Syllabus
	GCE O Level – November 2005	4037

		di
$6 v = 6 - 6e^{-3t}$		Attempt at differentiation. Co.
(i) $a = dv/dt = 18e^{-3t}$	M1 A1	Attempt at differentiation. Co.
$t = \ln 2 \ e^t = 2 \ \rightarrow \ e^{-3t} = 1/8$		
$\rightarrow a = 18/8 \text{ or } 2.25$	A1	Co.
	[3]	
(ii) $s = \int v dt = 6t + 2e^{-3t} [+c]$	Ml Al	Attempt at integration. Co. (ignore c)
but $t=0$ when $s=0, \rightarrow c=-2$	DM1	Don't allow if c automatically = 0.
Put $t = ln2 \rightarrow 2.41$	A1	Co.
	[4]	1
7	n.	l
(a) $2 = \log_7 49$	B1	Anywhere
Combines two logs correctly	M1	Allow even if first B1 not given
Forms equation and solves	DM1	Needs to have got rid of all logs
$\rightarrow y = 2$	Al (A)	correctly. Co
	[4]	N
		Nb change to lg is same scheme -same
		work needed.
(b) $\log_{\rho} 8 \times \log_{16} p$		a a
$\log_p 8 = \log_2 8 \div \log_2 p = 3/\log_2 p$	M1	Change of base once
$\log_{16}p = \frac{1}{4}\log_{2}p$	M1	Same base - 2,8,16,10 - so that p
		cancels.
→ ¾ or 0.75	A1	Co.
	[3]	
8 $y = (x+2)\sqrt{(x-1)}$	ъ.	
(i) $dy/dx = \sqrt{x-1} + (x+2) \times \frac{1}{2}(x-1)^{-\frac{1}{2}}$	Bl	B1 for correct diff of $\sqrt{x-1}$
$= (x - 1 + \frac{1}{2}x + 1) + \sqrt{x - 1}$	M1	Use of "uv" for M. co
,	M1	Reasonable attempt at algebra
$=\frac{3x}{2\sqrt{x-1}}$ $k=1.5 \text{ or } 1\frac{1}{2}$	Al	co
	[4]	
(ii) $\int_{2}^{3} \frac{x dx}{\sqrt{x-1}} = \frac{2}{3} \times \sqrt{(x-1)}(x+2)$		Use of $\int =$ reverse of differentiation.
$(11) \int \sqrt{x-1} = 73 \times \sqrt{(x-1)(x+2)}$	M1	
-	A1√	For 1 ÷ "his k"
evaluated from 2 to $5 = \frac{3}{3} \times (14 - 4)$ $\rightarrow 20/3$	DMI AI	Value at 25" – "value at 2". Co for A.
20/3	[4]	
9 (a) 3cosx = 8tanx = 8sinx/cosx	MI	Use of t=s/c
$\rightarrow 3\cos^2 x = 8\sin x = 3(1 - \sin^2 x)$	M1	Use of s²+c=1
$\rightarrow 3c0s^2x - 8sinx - 3(1 - sin^2x)$ $\rightarrow 3s^2 + 8s - 3 = 0$	DM1	
\rightarrow 3s ² + 6s - 3 = 0 \rightarrow s = -3 or $\frac{1}{3}$	DIVII	Correct attempt at quadratic = 0
$\rightarrow x = 19.5^{\circ} \text{ or } 160.5^{\circ}$	A1 A1s/	Co. for 180° – 1 st answer.
→ x - 19.5° or 100.5°	Al Al√	Co. for 180° – 1" answer.
	[5]	
		n
(h)(2/-) 2/2	1.61	
(b) $\cos(\frac{3}{3}y) = -\sqrt{3}/2$	M1	For cos ⁻¹ (±√3/2)
\rightarrow $\frac{2}{3}y = 5\pi/6$ or 2π – (answer)	DM1	For 2π – answer
1		

		Mary.
Page 3	Mark Scheme	Syllabus
	GCE O Level – November 2005	4037
		~

Page 3	Mark So		2005	Syllabus	
	GCE O Level – N	el – November 2005 4037			6
					BAND.
10. 24 B(2x)	(i) Pythagoras → AB=√40. BC=√40	M1 A1 [2]	Or by vectors		Cambridge.com
A M	(ii) $m \text{ of } AC = \frac{1}{2}$. m of BD = -2 $\text{eqn } BD \rightarrow y + 2x = 20$ $\rightarrow D (10, 0)$ or $M(4,12) \rightarrow m = -2$	B1 M1 M1 A1 [4]	Anywhere Use of $m_1m_2 = -1$ Not necessary to ha may be used. Finds $M \rightarrow m$ of -2 of		
BM : MI = √20 :	of <i>ABC</i> : Area of <i>ACD</i> D √180 = 1:3 h area by "matrix" or ½bh)	M1 M1 A1 [3]	Realises that only h Pythagoras – any fo M1 ABC (40) M1 A	orm ok for A mark.	
11 (i)	→ 2x-3-4 -2 ≤ x ≤ 3	B2,1 [2]	Must be "V" shape Must cross –ve x ar Endpoint –ve y. S		
(ii) Range	of f -4 to 3	B1 B1 [2]	Independent of gra 3 on its own.	ph. –4 on own ok.	
, · · · /	$3 = 2 \rightarrow x = 2\frac{1}{2} \text{ or } 2.5$ $3 = -2 \rightarrow x = \frac{1}{2} \text{ or } 0.5$	B1 M1A1 [3]	Co – answer only Correct method of	other solution. co	
(iv) Largest	value is x value at "V" = $1\frac{1}{2}$	B1√ [1]	From his graph – o	r any other method	
	n of left hand part of "V". → -2x - 1.	MI AI [2]		-2x - 1	,
				·.	

Page 4	Mark Scheme	Syllabus	S	
	GCE O Level – November 2005	4037	100	

e 4 Mark Sc		Syllabus
GCE O Level – N	ovember 2	005 4037
EITHER x 1.5 2 2.5 3 3.5 y 7.3 3.5 2.0 1.3 0.9 lgx 0.18 0.30 0.40 0.48 0.54 lgy 0.86 0.54 0.30 0.11 -0.05 Draws graph of lgy against lgx. Accuracy of points and line. n = 2.45 to 2.60 a = 19.5 to 21.0 y = $x^2 \rightarrow \lg y = 2\lg x$. \to \to \text{Line of gradient 2.} \ y = x^2 intersects $yx^n = a$ where the lines meet. \to \to \text{x} = 1.90 to 2.00	M1 A2,1,0 [3] M1 A1 M1 A1 [4] M1 A1 A1	Syllabus Noos Noos Noos Needs $m = \pm n$ for M. Co for +ve on Needs $\log a = 1$ intercept on y axis. Allow M1 for statement in log form. Reasonable attempt at line of $m = 2$ through $(0,0)$. Co.
OR $ \begin{array}{c} 8 \\ 9 \\ 0 \end{array} $ Area sector $COB = \frac{1}{2} \times 8^2 \times 1.2 = 38.4$ i) $AOC = \pi - 1.2 \text{ rad or } OAC = 0.6 \text{ rad}$	M1 A1 [2]	Use of ½r²θ with radians. Anywhere.
$AC^2 = 8^2 + 8^2 - 2 \times 8 \times 8 \times \cos(\pi - 1.2)$ or $AC = 2 \times 8 \times \cos 0.6 = 13.2$ area = $\frac{1}{2} \times 13.2^2 \times 0.6 = 52.27$	M1 A1 M1 A1√ [5]	Cosine rule or splitting into two 90° triangles. Use of ½r²θ with radians.
ii) Sector ACD + Shaded = AOC + Sector OBC	MI	Plan mark linking the 4 regions.
Triangle $AOC = \frac{1}{2} \times 8 \times 8 \times \sin(\pi - 1.2)$ = 29.8(3)	M1 A1	Independent mark –for triangle AOC Co for either 15.9 or 16.0.

Must be correct

- ignore arithmetic and algebraic slips.

Must attempt to put quadratic into 2 factors. Each factor then equated to 0.

Page 5	Mark Scheme GCE O Level – November 2005	Syllabus 4037
	GCE O Level – November 2005	4037
0 1		9
(2) CC)		•
		Syllabus Add Add Add Add Add Add Add Add Add Ad
1-6		
14	+	
1		
1.2	N .	
11		
10		
	*	
0.8		
	*	F1
0.4	X	
04		
0.7		

0.3

04

0.5

06

0.2

0.2

-0.2

8-1