UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS **GCE Ordinary Level**

www.papacambridge.com MARK SCHEME for the May/June 2008 question paper

4037 ADDITIONAL MATHEMATICS

4037/01

Paper 1, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2008 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

		· · · ·	
Page 2	Mark Scheme	Syllabus Syllabus	r
	GCE O LEVEL – May/June 2008	4037 203	1

Mark Scheme Notes

Marks are of the following three types:

- ambridge.com Μ Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- А Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- В Accuracy mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol $\sqrt{}$ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- B2 or A2 means that the candidate can earn 2 or 0. Note: B2, 1, 0 means that the candidate can earn anything from 0 to 2.

Page 3	Mark Scheme	Syllabus A
	GCE O LEVEL – May/June 2008	4037

Page 3	Mark Scheme	Syllabus er
	GCE O LEVEL – May/June 2008	4037
The follow	ving abbreviations may be used in a mark scheme or used	d on the scripts:
AG	Answer Given on the question paper (so extra checking the detailed working leading to the result is valid)	is needed to ensure that the co
BOD	Benefit of Doubt (allowed when the validity of a solution clear)	on may not be absolutely

- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)

Penalties

- MR -1 A penalty of MR -1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through $\sqrt{}$ " marks. MR is not applied when the candidate misreads his own figures - this is regarded as an error in accuracy.
- OW -1,2 This is deducted from A or B marks when essential working is omitted.
- PA -1 This is deducted from A or B marks in the case of premature approximation.
- S -1 Occasionally used for persistent slackness – usually discussed at a meeting.
- EX -1 Applied to A or B marks when extra solutions are offered to a particular equation. Again, this is usually discussed at the meeting.

Page 4	Mark Sch	eme		Syllabus 8
	GCE O LEVEL – M	ay/June 200	8	4037
$\frac{8-3\sqrt{2}}{4+3\sqrt{2}}\left(\frac{1}{2}\right)$	$\frac{4-3\sqrt{2}}{4-3\sqrt{2}}$	M1	M1 for atter	npt to rationalise
$\frac{32-12\sqrt{2}}{10}$ $\frac{50-36\sqrt{2}}{2}$	$\frac{2}{2} - 24\sqrt{2} + 18}{\frac{6}{2}}$	DM1	DM1 for att simplify	empt to expand out a
-2 a = -25, b	= 18	A1 [3]	Allow A1 at	t this stage
2 (i) ${}^{10}C_5 =$	= 252	B1		
(ii) 4 wor 3 wor	nen, 1 man: 6 nen, 2 men: ${}^{4}C_{3} \times {}^{6}C_{2}$ = 60	M1 B1 B1	M1 for a pla B1 for 6 B1 for 60	in
Total	= 66	A1 [4]	A1 for total Allow mark	s for other valid meth
(i) $4x^2 + (4y^2 - $	kx + 16 = 0 - 5ky + (k ² + 144) = 0)	M1	M1 for atter terms of one	npt to get a quadratic e variable
$b^{2} =$	$4ac, k^2 = 256, k = \pm 16$	DM1, A1 [3]	DM1 for use A1 for both	e of $b^2 - 4ac$
(ii) using When	$x = -\frac{b}{2a}$, or equivalent			
When	k = 16, (-2, 10) k = 16, (-2, 10)	B1 B1 [2]	B1 for each Allow B1 fc	pair or x values only
(i) gradi form $\therefore e^{y}$	ent = 2, equation of line of Y = mX + c, where $c = 0.6= 0.6$	M1 A1 [2]	M1 for atter straight line	npt to get equation of
(ii) $e^{y} =$	$2x^2 + 0.6$	A1	A1 for corre	ect form (allow if seer
∴ <i>y</i> =	$=\ln(2x^2+0.6)$	M1	M1 for atter	npt to take ln

						422	
Page	5	Mark Schem	ne			Syllabus 7.0 er	
	GCE	O LEVEL – May	/June	200	8	4037 282	
$5 = \frac{dy}{dx} = -$	$\frac{\tan x - x \sec^2 x}{\tan^2 x}$		M1 A1		M1 for corre quotient A1 all correc	ect attempt to differentiate a	bilde
When	$x = \frac{\pi}{4}, \frac{\mathrm{d}y}{\mathrm{d}x} = 1 - \frac{\pi}{2}$	1	M1		M1 for attem	npt to sub $x = \frac{\pi}{4}$ in to their $\frac{dy}{dx}$,
Using	$\frac{\mathrm{d}y}{\mathrm{d}t} = \frac{\mathrm{d}y}{\mathrm{d}x} \times \frac{\mathrm{d}x}{\mathrm{d}t}, \frac{\mathrm{d}y}{\mathrm{d}t} = \frac{1}{2}$	$2 - \pi$.1.14)	M1 A1	[5]	M1 for attem	npt to use rates of change	
6 $2x^{3} + f(1) = (x - 1)(x $	$+3x^{2} - 17x + 12 = 0$ = 0, (x - 1) is a factor $\frac{1}{2x^{2} + 5x - 12} = 0$ $\frac{1}{2x - 3}(x + 34) = 0$, $\frac{3}{2}$, -4	1 1 1 1	M1 M1 M1 DM1 B1,A1		M1 for simpl M1 for atten M1 for atten DM1 for fact marks B1 for solution A1 for the ot	lification pt to find a root pt to get quadratic factor torising on all previous M on from first root her pair	
7 (i) -	$\frac{1}{2}4^2\theta = 10$, leading to $\theta = 1.25$ rads	1	M1 A1	[0]	M1 for use o	$f \frac{1}{2}r^2\theta$	_
(ii)	$AB = 5$ $AC = 4 \tan 1.25, AC =$ $BC = \frac{4}{\cos 1.25} - 4, BC$ Perimeter = 25.7, allow	= 12.038 II C = 8.685 II 25.8 Z	B1 M1 M1 A1	[2]	M1 for attem M1 for attem	npt to get <i>AC</i> npt to get <i>BC</i>	
8 (i) ($a = \frac{1}{2}$	I	B1	[1]			
(ii) <i>i</i>	$b = \frac{1}{3}$ (allow 0.33 or be	etter)	B1	[1]			
(iii)	$3 \log_3 x + \log_3 y = 8$ $\log_3 x + \log_3 y = 2$ $\log_3 x = 3, \ x = 27$	1	M1		M1 for reduc 3 logs	cing equations to terms of bas	e
Allov	$\log_3 y = -1, \ y = \frac{1}{3}$ v solutions using index t	notation	DM1 A1 A1	[/1]	DM1 for dea equations and A1 for each	ling with simultaneous d logs to get final answers	

Page 6

Mark Scheme GCE O LEVEL – May/June 2008

				122
Pag	je (6 Mark Schen	ne	Syllabus 2. er
		GCE O LEVEL – May	/June 2008	8 4037 280
9 (i))	$y = \sin\left(2x - \frac{\pi}{2}\right) + c$	M1 A1	M1 for $\sin\left(2x-\frac{\pi}{2}\right)$
		(2)		A1 correct
		<i>c</i> = 2	M1, A1	M1 for attempt to get c Allow A1 for $c = 2$
		3π dv	[4]	4.
(ii	i)	at $x = \frac{3\pi}{4}, \frac{dy}{dx} = -2$	M1	M1 for attempt to get $\frac{dy}{dx}$
		Grad of normal $=\frac{1}{2}$		and for \perp gradient
		When $x = \frac{3\pi}{4}$, $y = 2$	M1	M1 for attempt to obtain y using
				$x = \frac{3\pi}{4}$ in answer to (i)
		normal $y-2 = \frac{1}{2}\left(x-\frac{3\pi}{4}\right)$	M1, A1	M1 for attempt to obtain normal, must be using \perp gradient – allow unsimplified
			[4]	
10 (i))	$\mathbf{v} = 15\sqrt{2} \frac{\left(\mathbf{i} + \mathbf{j}\right)}{\sqrt{2}}$	M1	M1 for attempt to get a direction vector
		v = 15i + 15j	A1 [2]	
(ii	i)	(2 i + 3 j) + (15 i + 15 j)1.5 24.5 i + 25.5 j	B1 [1]	Answer given
(ii	ii)	(2+15t) i + $(3+15t)$ j	M1, √A1	M1 for use of their velocity vector with
		Allow $(2i+3j) + (15i+15j)t$	[2]	2i + 3j. Follow through on their velocity vector
(iv	v)	relative velocity (15i + 15j) - 25j = 15i - 10j	M1, A1 [2]	M1 for a difference of velocities
(v)	')	relative displacement $(47\mathbf{i} - 27\mathbf{j}) - (2\mathbf{i} + 3\mathbf{j}) = 45\mathbf{i} - 30\mathbf{j}$ Time taken = 3 hours	M1	M1 for attempt to get relative displacement or other valid method.
		Position vector at interception 47i + 48j	A1 [2]	
		or $2\mathbf{i}+3\mathbf{j}+(15\mathbf{i}+15\mathbf{j})t =$		M1 for equating like vectors and
		$(47\mathbf{i} - 27\mathbf{j}) + 25t$ Allow solutions to (v) by drawing		attempt to get t

Mark Scheme GCE O LEVEL – May/June 2008

					444
F	age	7	Mark Schem	ne	Syllabus 20 er
	- J -		GCE O LEVEL – May	June 2008	4037 202
					Can
11	(i)	$\tan x = x = 12$	$=-\frac{5}{3}$ 1.0°,301.0°	M1 A1, √A1 [3]	M1 for use of tan and attempt at one solution A1 for each, $$ on first solution for x
	(ii)	$3 \sec^2$	$y - \sec y - 4 = 0$ $y - 4(\sec y + 1) = 0$	M1	M1 for use of correct identity and formation of a 3 term quadratic in one variable. M1 for factorising a 3 term quadratic
		$\cos y =$ $y = 41$	$=\frac{3}{4},-1$.4°,318.6°,180°	M1 B1, A1 [5]	M1 for all terms in terms of $\cos B1$ for 180° , A1 for the other pair
	(iii)	2z - 0. z = 0.76	.6 = 0.9273, 2.2143 64, 1.407 (allow 1.41)	M1 M1 A1, A1 [4]	M1 for correct order of operations M1 for a valid attempt at a second solution A1 for each
10	FIT	TIED			
12	E11 (i)	$(\pm\sqrt{3},$	0) allow	B1, B1 [2]	
	(ii)	$\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{1}{2}$ $= \mathrm{e}^{-x} \left(-\frac{1}{2} \mathrm{e}^{-x} \right)^{-1} + \frac{1}{2} \mathrm{e}^{-x} \left(-\frac{1}{2} \mathrm{e}^{-x} \mathrm{e}^{-x} \right)^{-1} + \frac{1}{2} \mathrm{e}^{-x} \mathrm{e}$	$-(x^2-3)e^{-x} + e^{-x}2x$ $2x - x^2 + 3)$	M1, A1	M1 for a correct attempt to differentiate a product or a quotient A1 allow unsimplified
		$\frac{dy}{dx} = 0$ leading -2e (5.4)	$x^{2} - 2x - 3 = 0$ (a) to $x = 3, -1$ and $y = 6e^{-3}(0.299)$, (44)	M1 A1 A1 [5]	M1 for attempting to solve $\frac{dy}{dx} = 0$ A1 for each pair
	(iii)	$\frac{d^2 y}{dx^2} =$ When x	$e^{-x}(2-2x) - e^{-x}(2x - x^2 + 3)$ $x = 3, \frac{d^2y}{dx^2}$ is -ve, max $x = -1, \frac{d^2y}{dx^2}$ is +ve, min	M1 B1 B1	M1 for attempt at second differential or use of gradient method B1 for each
		,,	dx^2	[3]	

Page 8	Mark Scher GCE O LEVEL – May	Mark Scheme E O LEVEL – May/June 2008		
2. OR (i) $v = -\frac{1}{2}$	$\frac{1}{t+1}, v_0 = 1$	M1, A1 [2]	M1 for atte	empt to differentiate
(ii) v = -	$\frac{1}{2(t-2)} - \frac{1}{t+1}$	M1	M1 for atte	empt to differentiate
$v_4 =$	$\frac{1}{4} - \frac{1}{5}; v_4 = \frac{1}{20} \ (\ 0.05)$	A1 [2]		
(iii) $a = -\frac{1}{2(a)}$	$\frac{1}{(t-2)^2} + \frac{1}{(t+1)^2}; a_4 = -\frac{17}{200}$ (-0.085)	M1, A1 [2]	M1 for atte	empt to differentiate
(iv) $\frac{1}{2(t+1)}$	$\left(\frac{1}{t-2}\right) - \frac{1}{t+1} = 0, t = 5$	DM1, A1 [2]	DM1 for e	equating v to zero
(v) $s_3 = s_4 = s_4$	$\ln 4 (1.386) \\ \ln \frac{16\sqrt{2}}{5} (1.509)$	M1	M1 for atte	empt to find s_3 and s_4
In 4 th sec, (allow 0.1	$s = \ln \frac{4\sqrt{2}}{5}$ (0.123) 24)	A1 [2]		