www.papacambridge.com MARK SCHEME for the October/November 2008 question paper

4037 MATHEMATICS

4037/01

Paper 1, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2008 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme	Syllabus	S.	er
	GCE O LEVEL – October/November 2008	4037	Do	

Mark Scheme Notes

Marks are of the following three types:

- cambridge.com Μ Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- А Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- В Accuracy mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol $\sqrt{}$ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- B2 or A2 means that the candidate can earn 2 or 0. Note: B2, 1, 0 means that the candidate can earn anything from 0 to 2.

		· · · ·	
Page 3	Mark Scheme	Syllabus Syllabus	er
	GCE O LEVEL – October/November 2008	4037	2

The following abbreviations may be used in a mark scheme or used on the scripts:

- Cambridge.com AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)

Penalties

- MR -1 A penalty of MR -1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through $\sqrt{}$ " marks. MR is not applied when the candidate misreads his own figures - this is regarded as an error in accuracy.
- OW -1,2 This is deducted from A or B marks when essential working is omitted.
- PA -1 This is deducted from A or B marks in the case of premature approximation.
- S -1 Occasionally used for persistent slackness – usually discussed at a meeting.
- EX -1 Applied to A or B marks when extra solutions are offered to a particular equation. Again, this is usually discussed at the meeting.

Page 4	Ма	rk Scheme		Syllabus Syllabus
	GCE O LEVEL –	October/N	ovember 2008	4037 23
		1		PHA
l (i) correct diag	ram	B1		9
(ii) correct diag	ram	B1		
(iii) correct diag	ram	B1 [3]		Syllabus 4037 Bus ana er 4037 Bus annor
2 $(2x+1)^2 > 8x+9$ $4x^2-4x-8 > 0$)	M1	M1 for simplificatio	on to 3 term quadratic
$x^{2} - x - 2 > 0$ (x + 1)(x - 2) > 0		DM1	DM1 for factorisation	n
Leads to critical		A1	A1 for critical value	S
x < -1 and $x > 2$		√A1 [4]	Follow through on t	heir critical values.
3	2			
LHS = $\frac{\sin^2 A + 1}{1}$	$\frac{1+\cos^2 A+2\cos A}{+\cos A)\sin A}$	M1		eal with fractions and attempt to
(1-	$+\cos A$ $\sin A$	A1	obtain numerator A1 correct	
$2 + 2\cos A$				2
$=\frac{2+2\cos A}{(1+\cos A)\sin A}$		M1	M1 for use of $\sin^2 A$	$+\cos^2 A = 1$
$=\frac{2}{1}$ leading		A 1 F 41		
$\sin A$	10 2003 CCA	A1 [4]		
Substitution of <i>x</i>		M1	M1 for substitution	of $x = 1$ and equated to 3
leading to $a + b$ -				1
	$x = -\frac{1}{2}$ leading to	M1	M1 for substitution	of $x = -\frac{1}{2}$ and equated to 6
-a+2b-28=0		. 1		
		A1	A1 for both correct	
Leading to $a = -$	12, $b = 8$	M1 A1 [5]	M1 for solution A1 for both	
		AI [5]		
5 (i) $a = \frac{1}{13} (5i - 5)$	- 12 j)	M1, A1	M1 for a valid attem	npt to obtain magnitude.
15		[2]		
(ii) $q(5i-12j) + 5q + p = 19$	$p\mathbf{i} + \mathbf{j} = 19\mathbf{i} - 23\mathbf{j}$	M1	M1 for equating like	e vectors
-12q + 1 = -12q + 12q + 1 = -12q + 12q		M1	M1 for solution of (simultaneous) equations
Leading to a	q = 2, p = 9	A1 [3]	A1 for both	
6 (i) $2t^2 - 9t - 5$		M1 DM1		o form a quadratic in t
(2t+1)(t-1)(t-1)		DM1 A1 [3]	A1 for both	solve a 3 term quadratic
$t = \frac{1}{2}, t = 5$				
<u>1</u>				
(ii) $x^{\frac{1}{2}} = -0.5, \pm x = 0.25, 25$		M1	M1 for realising that attempt at solution)	t $x^{0.5}$ is equivalent to t (or valid
x = 0.25, 25		A1,A1 [3]	anompt at solution)	

Page 5	Ma	rk Sch	eme		Syllabus 20 er
	GCE O LEVEL -				4037 83
					Call.
(i) $y = 4x^2 - 12$ y = (2x - 3)	x + 3 $x^{2} - 6$	B1 B1 B1	[3]	B1 for 2 (part of line B1 for -3 (part of line B1 for -6	
(ii) $\left(\frac{3}{2}, -6\right)$		√B1, √B1	[2]	Follow through on the Allow calculus methe	
(iii) f≥–6		√ B1	[1]	Follow through on the	neir c
$\frac{\mathrm{d}y}{\mathrm{d}x} = -2\mathrm{e}^{-2x}(+c)$		B1		B1 for $-2e^{-2x}$	
When $\frac{dy}{dx} = 3, x$ $\frac{dy}{dx} = -2e^{-2x} + 5$		M1 A1		M1 for attempt to fir	nd c_1
$\frac{dx}{dx} = -2c + 3$ $y = e^{-2x} + 5x(+c_2)$		B1		B1 for $-2e^{-2x}$	
$y = c^{-2x} + 5x(+c_2)$ When $x = 2, y = y = e^{-2x} + 5x - 10$	e^{-4} \therefore $c_2 = -10$	M1 √A1	[6]	M1 for attempt to fir $\sqrt{-2}$ times their c_1	nd c_2
(i) $2^5 + {}^5C_12^4(-32 - 240x + 32)$	$(-3x) + {}^{5}C_{2}2^{3}(-3x)^{2}$ $(-3x)^{2}$	B1 B1 B1	[3]	B1 for 32 or 2 ⁵ B1 for -240 B1 for 720.	
(ii) $32a = 64,$ 32b - 240a b = 9 -240b + 72i c = -720	= -192,	B1 M1 A1 M1 A1	[5]	B1 for $a = 2$ M1 for equation in a A1 for $b = 9$ M1 for equation in a A1 for $c = -720$	and b equated to ± 192 and b equated to c
0 (a) (i) $fg(x) =$	$f\left(\frac{x}{x}\right)$	M1		M1 for order	
= 3		A1	[2]		
(ii) $3 - \frac{x}{x+2} =$ leading to x		DM1 A1	[2]	DM1 for dealing wit	h fractions sensibly
(b) (i) $h(x) > 0$	4	B1	[1]		
or 4 + 1	e^{x-4} $e^{5} (\approx 148)$ $e^{5} (\approx 148)$ $e^{5} (\approx 148)$	M1 A1	[2]	M1 for attempting to	o obtain inverse function
(iii) correct	graphs	B1 P1		B1 for each curve	
		B1 B1	[3]	B1 for idea of symm	atm

		2
Page 6	Mark Scheme	Syllabus of er
	GCE O LEVEL – October/November 2008	4037
	·	

Р	age 6		irk Scheme		Syllabus A. A. er
		GCE O LEVEL –	October/N	ovember 2008	4037 23
					an.
11 (i)	$\tan^2 2x = 3$		M1	M1 for an equation i	in $\tan^2 2x$
	$\tan 2x = (\pm)$	$\sqrt{3}$	DM1	M1 for attempt to so	blve using $2x$ correctly
		20°, 240°, 300° 9, 120°, 150°	A1, A1 [4]	A1 for any pair	Syllabus r r 4037 r r r 4037 r
(ii)	•	$\csc y - 3 = 0$ 3)(cosec y - 1) = 0	M1, A1	A1 for a correct qua	of identity or other valid method dratic
	$\operatorname{cosec} y = -$	2	M1	correctly	uadratic and attempt to solve
	$\sin y = -\frac{2}{3},$ $y = 221.8^{\circ},$	1 318.2°, <i>y</i> = 90°	A1, A1	A1 for 221.8°, 318.2	2°, A1 for 90°
(iii)	$\cos\left(z+\frac{\pi}{2}\right)$	$=-\frac{1}{2}$	[5] M1	M1 for dealing with	sec and order of operations
	$z + \frac{\pi}{2} = \frac{2\pi}{3}$	$\frac{4\pi}{3}$			
	$z = \frac{\pi}{6}, \frac{5\pi}{6}, \frac{5\pi}{6}$	allow 0.52, 2.62 rads	A1,A1 [3]	A1 for each	
12 EIT	HER				
(i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{(x+1)}{(x+1)}$ $= \frac{x(x+1)}{(x+1)}$		M1 A1	M1 for attempt to di A1 correct allow uns	fferentiate a quotient simplified
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 0 , x =$ $y =$		DM1	DM1 for equating to	b zero and an attempt to solve
	<i>y</i> =	0, -4	A1,A1 [5]	A1 for each pair (co	uld be $x = 0$ and $x = -2$)
(ii)		normal = $-\frac{4}{3}$	M1	M1 for attempt to ob	otain gradient of the normal
		$-\frac{4}{3}x + \frac{11}{6}$, leads to	A1		simplified) normal equation
	M (1.375,0 N (0, -4))	√ B1 B1	Follow through on the B1 for <i>N</i>	heir normal
	Area = 2.75		M1 √A1 [6]	M1 for attempt to get Ft on their M and N	

Page 7		rk Scheme	Syllabus Syllabus er
	GCE O LEVEL –	October/N	ovember 2008 4037 730
12.00		Γ	3mg
12 OR (i) $\frac{dy}{dx} = e^{x-2} - \frac{dy}{dx} = 0, e^{x-2}$	-2	B1 B1	Syllabus er Syllabus er ovember 2008 4037 B1 for e^{x-2} B1 for -2 only M1 for equating to zero and attempt to solve
$\frac{\mathrm{d}x}{\mathrm{d}x} = 0, \mathrm{e}^{x-1}$	$^{2} = 2$	M1	M1 for equating to zero and attempt to solve
$x = 2 + \ln 2$ (2.69)		A1	A1 for <i>x</i>
$y = 4 - 2\ln^2 (2.61)$	2	A1	A1 for <i>y</i>
$\frac{d^2 y}{dx^2} = e^{x-2}$	² , always +ve ∴ min	B1 [6]	B1 for conclusion from a valid method
(ii)			
$\int_{0}^{3} (e^{x-2} - 2x + 6)$	$dx = \left[e^{x-2} - x^2 + 6x \right]_0^3$	M1, A1	M1 for attempt to integrate
<i>k</i> = 9	$dx = [e^{x-2} - x^2 + 6x]_0^3$ = (e - 9 + 18) - (e ⁻²) = e - e ⁻² + 9	M1 A1 B1 [5]	M1 for correctly applying limits A1 for $e - e^{-2}$ B1 for k