UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS **GCE Ordinary Level**

www.papacambridge.com MARK SCHEME for the October/November 2009 question paper

for the guidance of teachers

4037 ADDITIONAL MATHEMATICS

4037/01

Paper 1, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2009 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus
	GCE O LEVEL – October/November 2009	4037

Mark Scheme Notes

Marks are of the following three types:

- ambridge.com Μ Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- А Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- В Accuracy mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol $\sqrt{}$ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- B2 or A2 means that the candidate can earn 2 or 0. Note: B2, 1, 0 means that the candidate can earn anything from 0 to 2.

Page 3	Mark Scheme: Teachers' version	Syllabus	
	GCE O LEVEL – October/November 2009	4037	

The following abbreviations may be used in a mark scheme or used on the scripts:

- www.papaCambridge.com AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)

Penalties

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through $\sqrt{}$ " marks. MR is not applied when the candidate misreads his own figures – this is regarded as an error in accuracy.
- OW –1,2 This is deducted from A or B marks when essential working is omitted.
- PA –1 This is deducted from A or B marks in the case of premature approximation.
- S –1 Occasionally used for persistent slackness – usually discussed at a meeting.
- EX –1 Applied to A or B marks when extra solutions are offered to a particular equation. Again, this is usually discussed at the meeting.

	Page 4	Mark Scheme: Teach	ers' version	Syllabus er
	•	GCE O LEVEL – October/		009 4037 Xa
1		$+7a^2 + 16 = 0$ $a^3 = -8, a = -2$	M1 A1 [2]	SyllabusO09Syllabus4037900M1 for use of $x = a$ and equate maybe impliedM1 for substitution of $x = -\frac{1}{2}$ into their
	(ii) $2\left(-\frac{1}{2}\right)^3$	$-7\left(-\frac{1}{2}\right)^2 - 14\left(-\frac{1}{2}\right) + 16$	M1	
	= 21		A1 [2]	expression or $f(x)$
2	(i) $(6 \ 3 \ 1)$	(ii) 2)(5) (43)	B1, B1	B1 for each matrix, must be in correct order
	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$ \begin{pmatrix} 2\\ 3\\ 3\\ 0\\ 7 \end{pmatrix} \begin{pmatrix} 5\\ 3\\ 2\\ 1 \end{pmatrix} = \begin{pmatrix} 43\\ 32\\ 35\\ 22 \end{pmatrix} $	[2] B2, 1, 0 [2]	-1 for each error
3	$4(2k+1)^2 = 4(4k^2+3k-1)^2 = 4(4k^2+3k$	<i>k</i> + 2) 0	M1 A1	M1 for use of $b^2 - 4ac'$ Correct quadratic expression
	leading to $k =$	$\frac{1}{4}, -1$	M1 A1 [4]	M1 for correct attempt at solution A1 for both values
	$(13-3y)^2+3y$		M1	M1 for eliminating one variable
	$(or x2 + \frac{(13 - x)^{2}}{3})$ $6(2y^{2} - 13y + 2)$ $(or 2(2x^{2} - 13x))$ (or (2x - 7)(y - 3)) (or (2x - 5)(x - 3))	(21) = 0 (2 + 20) = 0 (2 + 20) = 0	A1 DM1	A1 for correct quadratic DM1 for correct attempt at solving quadratic
	$y = 3 \text{ or } \frac{7}{2} \left(x = \frac{7}{2} \right) = \frac{7}{2} \left(x = \frac{7}{2} \right)$		A1,A1	A1 for each correct pair
	$(or x = 4 or \frac{5}{2})$	$\left(y = \frac{7}{2} \text{ or } 3\right)$	[5]	
5	(i) $(3+\sqrt{2})^2$	$+\left(3-\sqrt{2}\right)^2=22$	M1	M1 for use of Pythagoras Use of decimals M1, A0
	$AC = \sqrt{2}$	2	A1 [2]	
	(ii) $\tan A = \frac{3}{3}$	$\frac{-\sqrt{2}}{+\sqrt{2}}$	M1	M1 for correct ratio
	$\frac{\left(3-\sqrt{2}\right)\left($	$\left(\frac{3-\sqrt{2}}{3-\sqrt{2}}\right) = \frac{11-6\sqrt{2}}{7}$	M1, A1	M1 for rationalising 2 term denominator
		,	[3]	

	Pa	ge 5	Mark Scheme: Teac	hers' version	n Syllabus of er
			GCE O LEVEL – Octobe	r/November 2	2009 4037 22
	(i)	$3x^2 - 10x + (3x+2)(x)$		M1	Syllabus er 2009 4037 M1 for attempt to solve quadration A1 for critical values Follow through on their critical values.
		critical va	lues $-\frac{2}{3}$, 4	A1	A1 for critical values
		$A = \{x : -$	$\frac{2}{3} \le x \le 4\}$	√A1 [3]	Follow through on their critical values.
		$B = \{x : x \\ A \cap B = \{x \in A \}$	$\geq 3 \}$ x: 3 $\leq x \leq 4 \}$	B1 B1 [2]	B1 for values of <i>x</i> that define <i>B</i> . B1 (beware of fortuitous answers)
7	(i)	$^{13}C_8 = 128$	7	M1, A1 [2]	M1 for correct C notation
	(ii)	6 teachers	, 1 student : 6 , 2 students ${}^{7}C_{6} \times {}^{6}C_{2}$: 105 , 3 students ${}^{7}C_{5} \times {}^{6}C_{3}$: 420	B1 B1 B1 B1 [4]	
8	(i)	When $t =$	0, <i>N</i> = 1000	B1 [1]	
		$\frac{\mathrm{d}N}{\mathrm{d}t} = -10$		M1	M1 for differentiation
		when $t = 0$), $\frac{\mathrm{d}N}{\mathrm{d}t} = -20$ leading to	DM1	DM1 for use of $\frac{\mathrm{d}N}{\mathrm{d}t} = \pm 20$
		$k = \frac{1}{50}$		A1 [3]	
		500 = 100		M1	M1 for attempt to formulate equation using half life
		$t = -50 \ln \frac{1}{2}$	$\frac{1}{2}$ leading to 34.7 mins	M1 A1 [3]	M1 for a correct attempt at solution (beware of fortuitous answers)
9	(i)	20 × -2(1	$(-2x)^{19}$	B1,B1 [2]	B1 for 20 and $(1 - 2x)^{19}$ B1 for -2 provided $(1 - 2x)^{19}$ is present
	(ii)	$x^2 \frac{1}{2} + 2x$	ln x	M1	M1 for attempt to differentiate a product
		ISW		B1 A1	B1 for $\frac{1}{x}$
		$x(2 \sec^2)$	$(2x+1)) - \tan(2x+1)$	[3]	
	(iii)	ISW	$\frac{2x+1)-\tan(2x+1)}{x^2}$	M1 B1 A1 [3]	M1 for attempt to differentiate a quotient. B1 for differentiation of $\tan (2x + 1)$ A1 all other terms correct

P	Page 6	Mark Scheme: Teachers' version		Syllabus of er
		GCE O LEVEL – Octobe	er/November 2	<u>009 4037 230</u>
10 (i	i) $\frac{dy}{dx} = 9x^2$ at <i>P</i> grad tangent <i>y</i>		M1 A1 DM1 A1 [4]	Syllabuser0094037M1 for differentiation A1 for gradient = 7 and $y = 3$ DM1 for attempt to find tangent equation
(ii	leading to ($x - 1$)(3) ($x - 1$)(3)	$-4 = 3x^{3} - 2x^{2} + 2x$ $x^{3} - 2x^{2} - 5x + 4 = 0$ $x^{2} + x - 4) - 0$ x + 4)(x - 1) = 0 $x = -\frac{4}{3}, y = -\frac{40}{3}$	M1 B1 DM1 DM1 A1 [5]	M1 for equating tangent and curve equations B1 for realising $(x - 1)$ is a factor DM1 attempt to factorise cubic DM1 for attempt to solve quadratic A1 for both
11 (a	$=\frac{\sin^2\theta}{\theta}$	$\theta \sin \theta$ $\overline{\sin \theta}$	B1 B1 B1	B1 for attempt to obtain one fraction B1 for use of an appropriate identity B1 for simplification
(b) (i	leading to		[3] M1 A1√A1 B1 [4]	Scheme follows for alternative proofs M1 for use of $\tan x = \frac{\sin x}{\cos x}$ and correct attempt to solve $\sqrt{A1}$ on their $x = 70.5^{\circ}$ B1 for $x = 180^{\circ}$
(ii	2(cosec ²) 2 cosec ²) (2 cosec) leading to	$5 3 \csc y = 0$ $y - 1) + 3 \csc y = 0$ $y + 3 \csc y - 2 = 0$ $y - 1)(\csc y + 2) = 0$ $\cos \sin y = -\frac{1}{2}, y = \frac{7\pi}{6}, \frac{11\pi}{6}$ 5 3.67, 5.76	M1 M1 M1 A1,A1 [5]	M1 for use of correct identity M1 for attempt to solve quadratic M1 for dealing with cosec/cot Scheme follows for alternative solutions

Page 7	Mark Scheme: Teachers' version			Syllabus Syllabus
	GCE O LEVEL – Octob	er/November 2	009	4037 732
2 EITHER			M1 for at	Syllabus 4037 tempt to use volume
(1) $\pi r h = 1$ $h = \frac{100}{\pi r^2}$	000, leading to $\frac{0}{2}$	M1 A1	MI for at	tempt to use volume
707		[2]		
	to given answer	B1	B1 for A GIVEN A	$= 2\pi r n + 2\pi r$
$A=2\pi r^2$	$r + \frac{2000}{r}$	A1 [2]		
(iii) $\frac{\mathrm{d}A}{\mathrm{d}r} = 4$	$\pi r - \frac{2000}{r^2}$	M1 A1	M1 for at A1 all con	tempt to differentiate given A rrect
when $\frac{d}{d}$	$\frac{4}{r} = 0, 4\pi r = \frac{2000}{r^2}$	DM1	DM1 for	solution = 0
leading	to $r = 5.42$	A1 [4]		
(iv) $\frac{\mathrm{d}^2 A}{\mathrm{d}r^2} = -$	$4\pi + \frac{4000}{r^3}$	M1	M1 for gradient r	second derivative method or
+ ve wh	en $r = 5.42$ so min value	A1		ninimum, must be from correct
$A_{\min} = 55$	54	B1 [3]		
2 OR (i) $y = x + c$	ros 2r	M1	M1 for at	tempt to differentiate
.,	$-2\sin 2x$	A1		
	$\frac{y}{x} = 0$, $\sin 2x = \frac{1}{2}$	DM1	DM1 for	setting to 0 and attempt to solve
	to $x = \frac{\pi}{12}, \frac{5\pi}{12}$	DM1 A1,A1 [6]	DM1 for	correct order of operations
(ii) Area =	$\int_{\frac{\pi}{12}}^{\frac{5\pi}{12}} x + \cos 2x dx$	M1	M1 for at	tempt to integrate
$=\left[\frac{x^2}{2}+\right]$	$\frac{12}{-\frac{1}{2}\sin 2x} \int_{\frac{\pi}{12}}^{\frac{5\pi}{12}} \frac{1}{\pi}$	A1,A1 DM1		ch term correct correct use of limits – must be in
$=\frac{\pi^2}{12}$		A1 [5]	(Trig tern	ns cancel out)