CAMBRIDGE INTERNATIONAL EXAMINATIONS GCE Ordinary Level

www.papacanbridge.com MARK SCHEME for the October/November 2012 series

4037 ADDITIONAL MATHEMATICS

4037/13

Paper 1, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2012 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	S.	r
	GCE O LEVEL – October/November 2012	4037	No.	

Mark Scheme Notes

Marks are of the following three types:

- Cambridge:com Μ Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- А Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- В Accuracy mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol $\sqrt{}$ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- B2 or A2 means that the candidate can earn 2 or 0. Note: B2, 1, 0 means that the candidate can earn anything from 0 to 2.

		· · · ·	_
Page 3	Mark Scheme	Syllabus	Y
	GCE O LEVEL – October/November 2012	4037	

The following abbreviations may be used in a mark scheme or used on the scripts:

- Cambridge.com AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)

Penalties

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through $\sqrt[n]{"}$ " marks. MR is not applied when the candidate misreads his own figures - this is regarded as an error in accuracy.
- OW –1,2 This is deducted from A or B marks when essential working is omitted.
- PA –1 This is deducted from A or B marks in the case of premature approximation.
- S –1 Occasionally used for persistent slackness – usually discussed at a meeting.
- EX –1 Applied to A or B marks when extra solutions are offered to a particular equation. Again, this is usually discussed at the meeting.

						1	ma		
	Page 4	Mark Sche GCE O LEVEL – October		mha	- 2012	Syllabu 4037	s P	X	
<u> </u>				Tibei		40 <i>3 i</i>		aC.	-
1	(a)	Q R P QR	B1 B1	[2]				bacambridg	e. 501.
		$B, B \supset F, F \subseteq B \text{ and } B \supseteq F,$ $B = F \text{ or } F \cup B = B$	B1	[1]					
 	• •	$F = \emptyset, S \cap F = \{\} \text{ or } \\ \cap F = 0$	B1	[1]					
2	(i) 3 or $\frac{3}{1}$		B1	[1]					
		$\frac{\sin t}{\cos^2 t} \left(=\frac{3\sin t}{3}\right)$	M1		M1 correct	substitution	in $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}t}$	$\times \frac{\mathrm{d}t}{\mathrm{d}x}$ o.e.	
	$=\frac{3\sin\frac{\pi}{6}}{3}$ $= 0.5$		DM1 A1	[3]	DM1 for u	se of their '3	' and substi	tution of $\frac{\pi}{6}$.	
3	(i) ${}^{15}C_7 = 643$.35	B1	[1]					
	(ii) ${}^{6}C_{2} \times {}^{9}C_{5}$	₅ =1890	M1,A1	1 [2]	M1 for a co	orrect metho	d		
	(iii) No wome 6435 – 36 = 6399		B1 M1 A1	[3]	B1 for 9C_7 M1 for a co	. =36 omplete, corr	rect method		
4	(i)		B1 B1, B1	1 [3]		in 2x		nishing at 1	
	(ii) $\left(\frac{\pi}{4}, 4\right)$	and $\left(\frac{3\pi}{4}, -2\right)$	B1, B1	1 [2]	B1 for each correct	h or B1 for b	oth x coord	inates	
	(iii) 3		B1ft	[1]	Ft from the	eir (i) or corr	ect		

Dogo 5	Mark Sche				Syllabus 4.	
Page 5	GCE O LEVEL – Octobe		mbe	r 2012	4037 2	
					See See	
(i)	80 β	B1			Syllabus 4037 rrect triangle implied by subsequent working	Brit
αβ	320 or 320					
$\frac{320}{\sin 120^\circ}$	$=\frac{80}{\sin\alpha}$	M1			pmplete method (sine rule and/or le) to find α or β	
$\alpha = 12.5^{\circ}$	° (or $\beta = 47.5^{\circ}$)	A1		A1 for α ((or β)	
Bearing	= 042.5° or 043°	A1	[4]	A1 for be	aring	
(ii) $\frac{v_r}{\sin 47.5^\circ}$	$v_r = \frac{320}{\sin 120^\circ}, v_r = 272.4$	M1			se of complete method (sine rule sine rule) to find v_r	
or $\frac{x}{\sin 12}$	$\frac{450}{\sin 47.5^{\circ}}$	A1		or <i>x</i> For either	v = 272 or x = 529	
Time = -	$\frac{450}{272.4}$ or $\frac{528.6}{320}$	DM1		DM1 for	450 their velocity	
= 1.65		A1	[4]	or their $\frac{1}{3}$	$\frac{x}{20}$	
$(p+x)^6 = p^6$	$+6p^5x+15p^4x^2+20p^3x^3$					
(i) $15p^4 = \frac{3}{2}$	$\frac{3}{2} \times 20p^3$,	B1, B M1	1		p^4 , B1 for $20p^3$ prrect attempt to equate	
<i>p</i> = 2		A1	[4]			
(ii) need p^6	$(1)+6p^{5}(-2)+15p^{4}(1)$	B1		B1 for bot	th $p^{6}, 6p^{5}$ (allow in (i))	
= - 80		M1 A1	[3]		tempt using 3 terms for $\left(1-\frac{1}{x}\right)^2$ ag and adding at least two terms ent of x	and

Page 6	Mark Sch	eme		Syllabus			
T age 0		GCE O LEVEL – October/November 2012					
$\frac{dx}{dt} = \frac{t^2}{t^2}$	-1) $-t(2t)$	M1		Syllabus r r 2012 4037 M1 for attempt to differentiate a quot product A1 all correct, allow unsimplified DM1 for equating to zero and attempt to solve to find t.			
(i) $\frac{\mathrm{d}x}{\mathrm{d}t} = \frac{\left(t^2 + \frac{1}{2}\right)^2}{\left(t^2 + \frac{1}{2}\right)^2}$		A1		product A1 all correct, allow unsimplified			
When $\frac{dt}{dt}$	$t=0, t=1$ so $x=\frac{1}{2}$	DM1		DM1 for equating to zero and attempt to solve to find <i>t</i> .			
		A1	[4]	A1 for $x = \frac{1}{2}$			
(ii) $\frac{t^2 x}{t^2} = \frac{(t^2 + 1)^2 (-1)^2}{(t^2 + 1)^2 (-1)^2}$	$\frac{-2t}{(t^2+1)^4} - \frac{(1-t^2)}{4t(t^2+1)} + \frac{1}{(t^2+1)^4}$	M1		M1 for attempt to differentiate a quotient or product to find acceleration			
	(i + 1) 1, acceleration = -0.5	A1 A1		A1 correct unsimplified			
		711	[3]				
(i) $f(2) = 24$	+20+2p+8=0	M1		M1 for use of 2 and equating to zero, or use of comparing coefficients or algebraic long			
<i>p</i> = – 26		A1		division			
a=3, b	=11, c=-4	В3	[5]	B1 for each of a , b and c			
(ii) $(x-2)($	3x-1)(x+4)	M1 A1		M1 for attempt to obtain 3 factors			
			[2]				
(i) $AD^2 = 20$	$b^{2} + 10^{2} - 2(20)(10)\cos\frac{5\pi}{6}$	M1		M1 finding <i>AD</i> using cosine rule including square root.			
		B1		B1 for either arc length			
	$=\frac{10\pi}{6}+\frac{20\pi}{6}+2(29.1)$	DM1		DM1 for correct plan before evaluation using correct arc lengths and <i>AD</i>			
= 73.9		A1	[4]	Awrt 73.9			
(ii) Area = $(\pi) = 1$	(π) (1,, 5π)						
$\frac{1}{2}10^2 \left(\frac{\pi}{6}\right) + \frac{1}{2}20^2 \left(\frac{\pi}{6}\right)$	$\left(\frac{\pi}{6}\right) + 2\left(\frac{1}{2}(10)(20)\sin\frac{5\pi}{6}\right)$	M1		M1 for area of triangle using the sine rule, or complete correct method			
		B1 DM1		B1 for $\frac{1}{2} 10^2 (\pi/6)$ or $\frac{1}{2} 20^2 (\pi/6)$ DM1 for correct plan before evaluation using correct sector and triangle areas.			
= 231		A1	[4]	Awrt 231			

	Pa	ge 7	Mark S	cheme		Syllabus Syllabus
			GCE O LEVEL – Octo		er 2012	4037 9030
10	$\sec x (\sec x - 2) = 0$		M1 M1 A1, A1 [4]	M1 for so	Syllabus 4037 bor use of correct identity or solution of quadratic in sec or co	
		$\sin^2 x - 2$	ne: $\frac{2}{\cos x} + 1 = 0$ $\cos x + \cos^2 x = 0$, .5, $x = 60^\circ$, 300°		for use of	aling with tan and sec correctly and correct identity lution to obtain cos x
			$= \frac{1}{5}, \tan 3y = (\pm) \frac{1}{\sqrt{5}}$ $y = (\pm) \frac{1}{\sqrt{6}}, \cos 3y = (\pm) \frac{\sqrt{5}}{\sqrt{6}}$	M1		rrectly obtaining in terms of 1 trig square rooting
		3y = 0.42	√6 √6 , 2.72, etc. , 0.907, 1.19, 1.95	M1 A1, A1 [4]		aling with '3' correctly st A1 for others
	(iii)	$\sin\left(z+\frac{\pi}{2}\right)$	$\left(\frac{t}{t}\right) = \frac{2}{5}$	M1	M1 for de	aling with '2' and cosec correctly
		$z+\frac{\pi}{4}=0.$	4115, 2.730, 6.695	DM1	DM1 for a	dealing with $\frac{\pi}{4}$ correctly
		<i>z</i> = 1.94,	5.91	A1,A1 [4]		
1	EIT	HER				
	(i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 5e^x$		B1	B1 For co	rrect derivative
		When x	$=\ln\frac{3}{5}, \ \frac{dy}{dx} = -2$	B1	B1 for gra	d = -2 from correct working
		When <i>x</i> =	$=1n\frac{3}{5}, y=8$	B1	B1 for $y =$	= 8
		Tangent:	$y-8=-2\left(x-\ln\frac{3}{5}\right)$	M1	Equation of their 8	of a tangent using their gradient and
		When y	$=0, \ x=4+\ln\frac{3}{5} \ (3.49)$	A1 [5]		
	(ii)	$\int_0^a 5e^x + 3e^x + 3$	$3e^{-x}$ dx=12	B1	B1 for con	rrect integration
		$5e^x - 3e^x$	$\begin{bmatrix} -x \\ 0 \end{bmatrix}_{0}^{a} = 12$			
		$5e^a - 3e^-$	$a^{-a} - 2 = 12$	M1	M1 for co	rrect use of limits
		$5e^{2a}-14$	$e^{a} - 3 = 0$	A1	Answer gi manipulat	iven so need to see some ion
				[3]		
	(iii)	$(5e^a+1)$	$(e^{a}-3)=0$	M1	M1 for red	cognising and dealing with quadrat
	(111)	(M1	M1 C	rrect method of solution to obtain a

							the second second
	Page 8 Mark Scheme						Syllabus
			GCE O LEVEL – October	r/Nove	mbe	r 2012	4037 22
11	OR (i)		2x = 2x = 2 + 2x = 2x = 2x = 2x		Ţ		Syllabus 4037 ttempt to differentiate a quotient on error
		$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{(1+\epsilon)^2}{(1+\epsilon)^2}$	$\frac{e^{2x}}{(1+e^{2x})^2} \frac{6e^{2x}-3e^{2x}}{(2e^{2x})^2}$	M1 A2,1,0	0	M1 for att product -1 each er	error
		$\overline{\left(1+\mathrm{e}^{2x}\right)^2}$ $\therefore A=6$		A1	[4]	For 6 obta	tained from correct working.
		When $x =$	$=0, y=\frac{3}{2}$	B1		B1 for $y =$	- ,
		$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{3}{2}$	B1ft	ļ	B1 for gra	$rad = \frac{A}{4}$	
		$\therefore y - \frac{3}{2} =$	$=\frac{3}{2}x$	B1ft	[3]	Ft their y_0	v_0 and $\frac{A}{4}$
	(iii)			1	ļ		
		$\int \frac{e^{2x}}{(1+e^{2x})}$	$\frac{1}{(x)^2}$ $dx = \frac{1}{2} \left(\frac{e^{2x}}{(1+e^{2x})} \right) (+c)$		ļ		ttempt at 'reverse differentiation'
		()	A1ft	ļ	Ft on their	Fir A, i.e. $\frac{3}{A}$ for a correct statement
			$\begin{bmatrix} x \\ e^{2x} \end{bmatrix}_{0}^{\ln 3} = \frac{1}{2} \left(\frac{9}{10} - \frac{1}{2} \right)$	M1	ļ		orrect use of limits
		= 0.2		Alft	[4]	Ft $\frac{A}{30}$	