CAMBRIDGE INTERNATIONAL EXAMINATIONS GCE Ordinary Level

www.papacanbridge.com MARK SCHEME for the October/November 2012 series

4037 ADDITIONAL MATHEMATICS

4037/23

Paper 2, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2012 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	S.	r
	GCE O LEVEL – October/November 2012	4037	No.	

Mark Scheme Notes

Marks are of the following three types:

- Cambridge:com Μ Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- А Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- В Accuracy mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol $\sqrt{}$ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- B2 or A2 means that the candidate can earn 2 or 0. Note: B2, 1, 0 means that the candidate can earn anything from 0 to 2.

		· · · ·	
Page 3	Mark Scheme	Syllabus	N.
	GCE O LEVEL – October/November 2012	4037	

The following abbreviations may be used in a mark scheme or used on the scripts:

- Cambridge.com AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)

Penalties

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through $\sqrt{}$ " marks. MR is not applied when the candidate misreads his own figures – this is regarded as an error in accuracy.
- OW –1,2 This is deducted from A or B marks when essential working is omitted.
- PA –1 This is deducted from A or B marks in the case of premature approximation.
- S –1 Occasionally used for persistent slackness – usually discussed at a meeting.
- EX –1 Applied to A or B marks when extra solutions are offered to a particular equation. Again, this is usually discussed at the meeting.

Page 4	Mark Scheme	Syllabus
	GCE O LEVEL – October/November 2012	4037

1	1.2 $5x + 7 = -13 \text{ or } 25x^2 + 70x + 49 = 169$ 5(5x - 6)(x + 4) = 0 -4	B1 M1 A1 [3]	correct positive value correct method to find second value correct final answer
2	(i) $\frac{1}{6 \times 7 - 8 \times 4} \begin{pmatrix} 6 & -8 \\ -4 & 7 \end{pmatrix}$	B1B1 [2]	B1 for each part of the inverse
	(ii) $\binom{x}{y} = \frac{1}{10} \binom{6}{-4} \frac{-8}{7} \binom{39}{23}$	M1	pre-multiply $\begin{pmatrix} 39\\23 \end{pmatrix}$ by their inverse
	$= \begin{pmatrix} 5\\ 0.5 \end{pmatrix}$	A1 [2]	correct answers, correctly associated
3	$(3\sqrt{3} - 1)^2 = 27 - 6\sqrt{3} + 1$	M1	multiplication, including $a\sqrt{3} \times b\sqrt{3} = 3ab$
	or $(3\sqrt{3} - 1)(2\sqrt{3} + 3) = 18 + 7\sqrt{3} - 3$	A1	a correct expansion
	$\times \frac{2\sqrt{3}+3}{2\sqrt{3}+3} \text{ or } 28-6\sqrt{3} = \frac{a\sqrt{3}+b}{3}(2-3)$	M1	valid method to obtain a value for <i>a</i> or <i>b</i>
	$\frac{38\sqrt{3}+48}{3}$ or $a = 38, b = 48$	A1 [4]	correct answers

	Page 5	Mark Sche GCE O LEVEL – Octobe		er 2012	Syllabus 4037 Approx	
4	$\overrightarrow{XZ} = \begin{pmatrix} 16\\ 20 \end{pmatrix}$		B1	correct vect	$\frac{Syllabus}{4037}$	
	$\overrightarrow{OY} = \begin{pmatrix} 4 \\ -27 \end{pmatrix} + \frac{3}{4} \begin{pmatrix} 1 \\ 2 \end{pmatrix}$	$ \binom{6}{0} \operatorname{or} \binom{20}{-7} + \frac{1}{4} \binom{-16}{-20} $	M1	valid metho	od for \overrightarrow{OY}	
	$=\begin{pmatrix}16\\-12\end{pmatrix}$		A1	correct vector for <i>OY</i>		
	$\overrightarrow{OY} = \sqrt{16^2 + (-12)^2}$	$\overline{)^2}$ oe	M1	uses Pythag	goras to find length of \overrightarrow{OY}	
	unit vector in directi	on of $\overrightarrow{OY} = \begin{pmatrix} 0.8 \\ -0.6 \end{pmatrix}$ oe	A1 [5]	correct vector expression		
	OR $\overrightarrow{OY} - \overrightarrow{OX} = 3\overrightarrow{O}$	$\vec{Z} = 3\vec{OY}$	B1	correct vect	tor equation	
	$4\overrightarrow{OY} = \begin{pmatrix} 4\\ -27 \end{pmatrix} +$	$+3\binom{20}{-7} = \binom{64}{-48}$	M1	collect \overrightarrow{OY}	s and substitute for \overrightarrow{OX} and \overrightarrow{OZ}	
	$\overrightarrow{OY} = \begin{pmatrix} 16\\ -12 \end{pmatrix}$ e		A1	correct vect	tor for <i>OY</i>	
	OR $\overrightarrow{OY} = \frac{\overrightarrow{OX} + 3\overrightarrow{O}}{4}$		B1	correct use	of intercept theorem	
	$=\frac{\begin{pmatrix}4\\-27\end{pmatrix}+3}{4}$	$3\left(\frac{20}{-7}\right)$	M1	substitute fo	or \overrightarrow{OX} and \overrightarrow{OZ} and divide	
	$= \begin{pmatrix} 16\\ -12 \end{pmatrix}^4 6$		A1	correct vect	tor for <i>OY</i>	

	Page 6	6 Mark Scheme GCE O LEVEL – October/November 2012		oer 2012	Syllabus 4037 AData
5	$mx + 2 = mx^{2} + 7x + mx^{2} + 7x - mx + 9 = (7 - m)^{2} - 4 \times m \times 9$ $m^{2} - 50m + 49 \sim 0$ $(m - 1)(m - 49), m = 1 < m < 49$	0 ~ 0	M1* A1 M1dep* A1 M1 A1 [6]	correct quad	ation iscriminant with 0 dratic m quadratic for m
5	(a) $\sec^2 x = \frac{1}{p^2}$ $\tan^2 x = \sec^2 x - \frac{1}{p^2}$	$1 = \frac{1}{p^2} - 1$	B1 M1 A1 [3]		The residual descent formula (p s only) ver, oe
		$\frac{1}{p^2} \frac{x}{x} = \frac{1 - p^2}{p^2}$	B1 M1 A1		The residual descent formula $(ps \text{ only})$ wer, oe
	OR $\sqrt{1-p^2}$ $\tan x = \frac{\sqrt{1-p^2}}{p^2}$ $\tan^2 x = \frac{1-p^2}{p^2}$	$\frac{1}{p}$	B1 M1 A1	<pre>'opposite' is tanx = their correct answ</pre>	opposite ÷ their adjacent
	(b) $\cot^2\theta + 2(\cot\theta t)$		B1 B1 B1 [3]	-	uring of bracket rect relevant formula pletion

					1332
	Page 7	Mark Sche			Syllabus Syllabus
		GCE O LEVEL – Octobe	er/Novemb	er 2012	4037 73
7	(a) $\int \left(x^{\frac{3}{2}} + 3x^{\frac{1}{2}}\right) dx$ $\frac{2}{5}x^{\frac{5}{2}} + 2x^{\frac{3}{2}}(+c)$		B1 M1 A1 [3]		Syllabus 4037 ression in terms of indices ctional power by 1 wer, ISW
	(b)		[9]		
	$\frac{k}{2x+5}$ oe		M1	integral of c	correct form, k a constant
	$\frac{-10}{2x+5}$ oe		A1	correct inte	gral, ignore '+ c '
	$\frac{k}{2 \times 10 + 5} - \frac{k}{5}$		M1	with $x = 0$	al with $x = 10$ subtract their integral
	1.6		A1√ [4]	correct answ	wer, ft their $k \left(= \frac{-4}{25} k \right)$
8	gradient $\frac{9-3}{1-(-2)} (=2)$	2)	B1	correct grad	lient
	(AD) y-5 = 2(x-	4) or $y = 2x - 3$	B1√	correct equa	ation for AD , ft their m_{AD}
	$(CD) \ y - 9 = -\frac{1}{2} (x)$	(x-1) or $x+2y=19$	M1 A1		x = -1 and $x = 1$ and $y = 9$ in equation of line ation for <i>CD</i>
	solves equation for A D is (5, 7)	1D with equation for CD	M1 A1	solving equ x = 5, y = 7	ations for a value of x or y
	$\operatorname{area} = \frac{1}{2} \begin{vmatrix} 4 & -2 & 1 & 5 \\ 5 & 3 & 9 & 7 \end{vmatrix}$	$\begin{vmatrix} 4\\5 \end{vmatrix} = \frac{1}{2} 26 - 66 $	M1	a correct me	ethod to calculate the area of the trapezium
	or $=\frac{1}{2}\left(\sqrt{5}+\sqrt{45}\right)$	$\sqrt{20}$			
	= 20		A1 [8]	correct answ	wer
	OR (X on BC , $AX//D$				
	$gradient = \frac{9-3}{1-(-2)} \Big($	= 2)	B1	correct grad	lient
	(BC) y-9=2(x-1)) or $y = 2x + 7$	B1	correct equa	ation for <i>BC</i>
	2	(-4) or $2y = -x + 14$	M1 A1	correct equa	x = -1 and $x = 4$ and $y = 5$ in equation of line ation for AX
	solves equation E X(0, 7)	<i>BC</i> with equation <i>AX</i>	M1		ations for a value of x or y
	A(0, 7) area Δ + area re	ctangle	A1 M1	x = 0, y = 7	
	$=\frac{1}{2}\sqrt{20}\times\sqrt{20}+$	-		a correct me	ethod to calculate the area
	= 20	· ·	A1	correct answ	
	- V				

								Mary .
		Page 8			Mark Sc			Syllabus Syllabus
				GCE O LE	VEL – Octo	ber/Novemb	er 2012	4037 730
9	(i)	<i>x</i> ³				B1 [1]	correct answ	Syllabus 4037 wer y against x^3 , linear axes bints plotted correctly
	(ii)		0	0.7		M1	anault of 2	inst 3 lines and
	$\frac{x^3}{x^2y}$	1 9.41	8 5.16	27 -6.21	64 -28.32	M1 A2,1,0 [3]		x against x^3 , linear axes bints plotted correctly
	(iii)	a = 9.5 to 1	0.5			B1	correct answ	
		gradient =	$y_2 - y_1$			M1	finding nun	nerical value for the gradient
		$b = -0.6 \pm 0.6$				A1 [3]	correct answ	wer
	(iv)	$y = \frac{a}{13.69}$	+ 3.7 <i>b</i> o	or $13.69y = a$	+ 50.653 <i>b</i>	M1	appropriate divide value	substitutions or read graph at 50.653 and e by 13.69
		$= -1.48 \pm 0$	0.04			A1 [2]	correct answ	wer
10	(i)	$x^2 + 80^2$ sec	en			B1		
		time = $\frac{\text{dista}}{\text{spec}}$		2		B1 [2]		
	(ii)	$\left(\frac{\mathrm{d}T}{\mathrm{d}T}\right)$	1	x		M1*	attempt to d	lifferentiate given expression
		$\left(\frac{\mathrm{d}T}{\mathrm{d}x}\right) = \frac{1}{10}$	$\int 6\sqrt{x}$	$z^2 + 6400$		A1A1		rrect unsimplified term
		$\frac{x}{6\sqrt{x^2+64}}$	$\frac{1}{100} = \frac{1}{10}$	- oe		M1dep*	attempt to s	solve $\frac{\mathrm{d}T}{\mathrm{d}x} = 0$, to include squaring both
		x = 60				A1	correct answ	wer for <i>x</i>
		$T = 30\frac{2}{3} \left(3\right)$	30.7)			A1 [6]	correct answ	wer for <i>T</i>

					122
Г	Page 9	Mark Sche	eme		Syllabus 7. S r
		GCE O LEVEL – Octobe	er/Novemb	er 2012	4037 202
11 (a)	$2^{x-2} = 100^2$	$\frac{x-2}{2} = \log_2 100$	B1	correct expr	Syllabus 4037 ession
	or $2^{\left(\frac{x}{2}-1\right)} = 100$	2		1	Com
	$x = 2 + \frac{4}{0.30}$	· ·1	M1	valid attemp	ot to obtain value for x
(b)	=15.3		A1 [3]	correct answ	ver
	$\log_y 512 = 3 \text{ or}$ or $\log_y k = \frac{\log_y k}{\log_y k}$		B1	correct relev	vant use of rule for logarithms
	$y^3 = 512 \text{ or } 2 =$	-	M1	attempt to se	olve
	<i>y</i> = 8		A1 [3]	correct answ	ver
(c)	$\frac{6^{5z-2}}{6^{2z}} = \frac{6^{3(z-1)}}{6^{2(3-z)}}$		M1	attempt to end or log6	xpress at least two elements in terms of 6^z
		$6^{2z} = \log 6^{3(z-1)} - \log 6^{2(3-z)}$	A1	correct expr	ession
	5z - 2 - 2z = 3z - z = 3.5	3 - (6 - 2z) oe	M1 A1	uses rule of index/log fo correct answ	
	2		[4]		
12E (i)	$(2x+8)^2-9$	or $a = 2, b = 8, c = -9$	B1B1B1 [3]		correct value
(ii)	$f^{-1}(x) = \frac{\sqrt{(x+9)}}{2}$	$\overline{)-8}$ oe	M1		$\operatorname{prm} \frac{\sqrt{(x \pm c)} \pm b}{a}$
(iii)	$(2)^2$		A2,1,0√ [3]	3, 1-2, 0 c	orrect values, ft their a, b and c
		135 or $\frac{4}{x^2} + \frac{32}{x} + 55 = 135$	M1	apply fg (no	ot gf) or replace x by $\frac{1}{x}$
	$\frac{2}{x} + 8 = 12(\text{or} -$	$12) \text{ or } 80x^2 - 32x - 4 = 0$	A1 M1	correct equa valid metho	tion d for solving their equation
	x = 0.5 oe, only		A1 [4]	correct answ	ver

Page 10	Mark Scheme GCE O LEVEL – October/Noven	ber 2012	Syllabus 4037
O (i) 3.5	B1 [1	correct ans	wer annung
(ii) $y^2 + 7 = 2x$ $h^{-1}(x) = \frac{x^2 + 7}{2}$	M1 A1 [2	correct invo	Syllabus 4037 wer inverse, involving squaring erse
(iii) $\frac{3x-4}{x-2} = x, x^2 - x^2$	5x + 4 = 0 M1	equate $k(x)$	with x and obtain quadratic equation
(x-4)(x-1) $x = 4 only$	M1 A1 [3	correct ans	term quadratic wer
(iv)			
$3\left(\frac{3x-4}{x-2}\right)-4$	M1	substitute t	o obtain expression for k^2
$\frac{3\left(\frac{3x-4}{x-2}\right)-4}{\left(\frac{3x-4}{x-2}\right)-2}$	A1	correct uns	implified expression
$\frac{3(3x-4)-4(x-3)}{3x-4-2(x-3)}$	- <u>2)</u> 2) M1	multiply nu	umerator and denominator by $(x - 2)$, oe
$5-\frac{4}{x}$	A1 [4	correct ans	wer