MARK SCHEME for the October/November 2013 series

4037 ADDITIONAL MATHEMATICS

4037/12 Paper 1, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	GCE O LEVEL – October/November 2013	4037	12

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Accuracy mark for a correct result or statement independent of method marks.
- When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √^h implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously 'correct' answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.
 B2, 1, 0 means that the candidate can earn anything from 0 to 2.

	Page 3	Page 3 Mark Scheme			Syllabus	Paper
		GCE O LEVEL – October	/November 2	2013	4037	12
1	a = 3, b = 2,	<i>c</i> = 1	B1, B1, B1 [3]	B1 for	each	
2	Using $b^2 - 4ac$ $4k^2 + 8k -$	M1 DM1		t any use of $b^2 - 4ac$ For solution of their	quadratic in k	
	$k=-\frac{5}{2},$	A1	A1 for	critical value(s), $\frac{1}{2}$	not necessary	
	To be below the	the x-axis $k < -\frac{5}{2}$	A1 [4]	A1 for	$k < -\frac{5}{2}$ only	
	To lie under th $\therefore (k+1)\frac{9}{4(k+1)}$	$x = \frac{3}{2(k+1)}$ $\frac{9}{(k+1)^2} - \frac{9}{2(k+1)} + (k+1)$ e x-axis, y < 0 $\frac{1}{1} - \frac{9}{2(k+1)} + (k+1) < 0$ $4(k+1)^2 \text{ or equivalent}$	M1	M1 for	r a complete method	l to this point.

Page 4					Syllabus	Paper	
	GCE O LEVEL – October/November 2				4037	12	
Γ							
3 $\frac{1+\sin\theta}{\cos\theta} + \frac{\cos\theta}{1+\sin\theta} + \frac{(1+\sin\theta)^2 + \cos^2\theta}{\cos\theta(1+\sin\theta)}$ $= \frac{1+2\sin\theta + \sin^2\theta + \cos^2\theta}{\cos\theta(1+\sin\theta)}$				M1 for dealing with the fractions, denominator must be correct, be genero with numerator			
$=\frac{2+2\sin\theta}{\cos\theta(1+\sin\theta)}$					M1 for expansion and use of $\cos^2 \theta + \sin^2 \theta = 1$		
$=\frac{2(1+)}{\cos\theta(1+)}$	$\frac{\sin\theta}{+\sin\theta}$	DM1		M1 for	r attempt to factoris	e	
$=2 \sec \theta$		A1	[4]	A1 for	obtaining final ans	wer correctly	
$\sec \theta + \tan \theta$ $= \frac{(\sec \theta + \tan \theta)}{\sec \theta}$ $= \frac{\sec^2 \theta + \tan^2 \theta}{\sec^2 \theta}$ $= \frac{2\sec^2 \theta}{\sec^2 \theta}$	Alternative solution: $\sec \theta + \tan \theta + \frac{1}{\sec \theta + \tan \theta}$ $= \frac{(\sec \theta + \tan \theta)^2 + 1}{\sec \theta + \tan \theta}$ $= \frac{\sec^2 \theta + 2 \sec \theta \tan \theta + \tan^2 \theta + 1}{\sec \theta + \tan \theta}$ $= \frac{2 \sec^2 \theta + 2 \sec \theta \tan \theta}{\sec^2 \theta + 2 \sec \theta \tan \theta}$			M1 for M1 for	actions		
$=\frac{2\sec\theta(\sec\theta)}{\sec\theta}$	$\frac{\theta + \tan \theta}{\det \theta + \tan \theta}$	DM1 DM1		$\tan^2 \theta$ DM1 f	ise		
$=2\sec\theta$		A1		A1 for	obtaining final ans	wer correctly	
4 (i) n (A) = 3		B1	[1]	correct $n(A) =$	nents listed for (i), t t elements to get B1 = 3. If they are not 1 r given then B1.	leading to	
(ii) n (<i>B</i>) = 4		B1	[1]	correct B1. If	nents listed for (ii) , t elements leading t they are not listed a then B1.	on $(B) = 4$ to get	
(iii) $A \cup B = \{$	{60°, 240°, 300, 420°, 600°}	√B1	[1]		through on any set o not allow any repo		
(iv) $A \cap B = \{$	{60°, 420°}	√B1	[1]	Follow (ii).	through on any set	ts listed in (i) and	

Page 5					Paper		
	GCE O LEVEL – October/N	lovember 2	013	4037	12		
5 (i) $9x - \frac{1}{3}cc$	s 3 <i>x</i> (+ <i>c</i>)	B1, B1, B1	B1 for 9x, B1 for $\frac{1}{3}$ or cos3x				
			B1 for $-\frac{1}{3}\cos 3x$ Condone omission of $+c$				
(ii) $\left[9x - \frac{1}{3}c\right]$	$\left[\cos 3x \right]_{\frac{\pi}{9}}^{\pi}$						
$=\left(9\pi-\frac{1}{3}\right)$	$\left(\pi - \frac{1}{3}\cos 3\pi\right) - \left(\pi - \frac{1}{3}\cos \frac{\pi}{3}\right)$	M1	M1 for to (i)	correct use of limi	ts in their answer		
$=8\pi+\frac{1}{2}$		A1, A1 [3]	A1 for	each term			
$6 \qquad \mathbf{f}\left(\frac{1}{2}\right) = \frac{a}{8} + 1$	$+\frac{b}{2}-2$	M1	M1 for	substitution of $x =$	$=\frac{1}{2}$ into f (x)		
leading to $a +$	4b - 8 = 0	A1	A1 for	correct equation in	any form		
f(2) = 2f(-1)		M1		attempt to substitution into $f(x)$ and use $f(x) + f(-1)$			
8a + 16 + 2b -	-2 = 2(-a + 4 - b - 2)	A1		a correct equation	in any form		
leading to $10a$ $\therefore a = -2, b$	+4b+10 = 0 or equivalent = $\frac{5}{2}$	DM1	`	on both previous N	· · · · · · · · · · · · · · · · · · ·		
	2	A1 [6]	obtain	t to solve simultane either a or b both correct	eous equations to		

Pa	Page 6 Mark Scheme				Syllabus	Paper			
		GCE O LEVEL – October/N	ovembe	r 2013	4037	12			
7 (a)	(i) 360(ii) 120		B1 [1 B1 [1						
(b)	(i) 924(ii) 28	4	B1 [1 B1]					
		4 $-({}^{8}C_{3} \times {}^{4}C_{3}) - ({}^{8}C_{2} \times {}^{4}C_{4})$ 4 $-$ 3M 3W $-$ 2M 4W)	[1 M1	M1 fo	or 3 terms, at least 2 ct in terms of <i>C</i> nota				
	92 = 672	4 - 224 - 28	A1 A1 [3	A1 fo	r any pair (must be r final answer	evaluated)			
Or		${}^{8}C_{4} \times {}^{4}C_{2} = 420$	M1		M1 for 3 terms, at least 2 of which must be correct in terms of C notation or evaluated. A1 for any pair (must be evaluated)				
		${}^{8}C_{5} \times {}^{4}C_{1} = 224$ ${}^{8}C_{6} = 28$	A1	A1 fo					
		Total $= 672$	A1	A1 fo	A1 for final answer				
8 (i)			B1 B1		r correct shape r (-3, 0) or -3 seen o	on graph			
			B1		r (2, 0) or 2 seen on				
			B1 [4		r (0, 6) or 6 seen on	graph or in a table			
(ii)	$\left(-\frac{1}{2},\frac{25}{4}\right)$.)	B1, B1 [2		r each				
(iii)	$k > \frac{25}{4}$ or	$r \frac{25}{4} < k \ (\le 14)$	B1 [1	.]					

	Page 7 Mark Scheme				Syllabus	Paper	
	-	GCE O LEVEL – October/N	lovember 2	013	4037	12	
9	(a) $12x^2\ln(2$	$(x+1) + 4x^3 \left(\frac{2}{2x+1}\right)$	M1 A2, 1, 0 [3]	M1 for differentiation of a correct prod -1 for each error			
	(b) (i) $\frac{dy}{dx}$	$\frac{1}{x} = \frac{(x+2)^{\frac{1}{2}} 2 - 2x(x+2)^{-\frac{1}{2}} \frac{1}{2}}{x+2}$	M1, A1		differentiation of a ng $(x+2)^{\frac{1}{2}}$	quotient	
		$=\frac{(x+2)^{-\frac{1}{2}}}{(x+2)}(2(x+2)-x)$	DM1	A1 all correct unsimplified DM1 for attempt to simplify			
	=-	$\frac{x+4}{\left(x+2\right)^{\frac{3}{2}}}$	A1 [4]	A1 for given a	correct simplifications in the second s	on to obtain the	
	Or: $\frac{\mathrm{d}y}{\mathrm{d}x} = 2x\left($	$\left(-\frac{1}{2}\right)(x+2)^{-\frac{3}{2}}+(x+2)^{-\frac{1}{2}}(2)$	M1, A1		differentiation of a ng $(x+2)^{-\frac{1}{2}}$	product	
	$= \frac{x}{x}$	$(+2)^{-\frac{3}{2}}(2(x+2)-x) + \frac{4}{(x+2)^{\frac{3}{2}}}$	DM1 A1	DM1 f	correct unsimplified or attempt to simpli correct simplification nswer	fy	
	(ii) $\frac{10x}{\sqrt{x+2}}$ ((+c)	M1,A1 [2]	A1 cor	$\frac{1}{5} \times \frac{2x}{\sqrt{x+2}} \text{ or } 5 \times \frac{2x}{\sqrt{x+2}}$ rect only, allow unspective omission of $+c$	V —	
	(iii) $\left[\frac{10x}{\sqrt{x+2}}\right]$		M1		correct application to (b)(ii)	of limits in their	
		$=\frac{40}{3}$	A1 [2]				

Page 8	Mark Schem		Syllabus	Paper		
	GCE O LEVEL – October/N	lovember 2	013	4037	12	
10 (i) $\sqrt{20}$ or 4.	47	B1 [1]				
(ii) Grad <i>AB</i> =	$=\frac{1}{2}, \perp \text{grad} = -2$	M1	M1 for	r attempt at a perp g	gradient	
\perp line y	M1, A1	M1 for attempt at straight line equation, must be perpendicular and passing through <i>B</i> .				
(y = -2x +	- 6)	[3]	A1 all	ow unsimplified		
(iii) Coords of $(x-1)^2 +$	M1	M1 for attempt to obtain relationship using an appropriate length and the point $(1, 4)$ or				
$(x+3)^2 +$	$C(x, y)$ and $AC^2 = 40$ $(y-2)^2 = 40$	A1	(-3, 2) A1 for a correct equation			
Need inte	rsection with $y = -2x + 6$,	DM1	DM1 for attempt to solve with $y = -2x + 6$ and obtain a quadratic equation in terms of one variable only			
leads to 5. $5y^2 - 40y$	$x^2 - 10x - 15 = 0 \text{ or} \\ - = 0$					
giving $x =$ and $y =$	DM1 A1, A1 [6]	M1 for attempt to solve quadratic A1 for each 'pair'				
Or , using v	ector approach:					
$\overrightarrow{AB} = \begin{pmatrix} 4\\ 2 \end{pmatrix}$		B1	May be implied			
$\overrightarrow{OC} = \begin{pmatrix} 1\\4 \end{pmatrix} + \begin{pmatrix} -2\\4 \end{pmatrix} = \begin{pmatrix} -1\\8 \end{pmatrix}$		M1 A1, A1	M1 for correct approach A1 for each element correct			
$\overrightarrow{OC} = \begin{pmatrix} 1 \\ 4 \end{pmatrix} +$	$\begin{pmatrix} 2 \\ -4 \end{pmatrix} = \begin{pmatrix} 3 \\ 0 \end{pmatrix}$	A1,A1	A1 for each element correct			

Page 9	Mark Schem	e		Syllabus	Paper
	GCE O LEVEL – October/N	lovember 2	013	4037	12
11 (a) (i) $\begin{pmatrix} 4\\4 \end{pmatrix}$	$\begin{pmatrix} 3\\3 \end{pmatrix}$	B1 [1]			
(ii) A ²	$= \begin{pmatrix} 16 & 9\\ 12 & 13 \end{pmatrix}$	B1, B1 [2]		any 2 correct element	ents
	s the inverse matrix of \mathbf{A}^2 $\frac{1}{00} \begin{pmatrix} 13 & -9 \\ -12 & 16 \end{pmatrix}$	√B1, √B1 [2]	Follow	through on their A	2
(b) det $\mathbf{C} = x_1$ = 2:	$ (x-1) - (-1)(x^2 - x + 1) x^2 - 2x + 1 $	M1 A1	A1 for t	attempt to obtain d his correct quadra correct det C	
<i>b</i> ² – 4 <i>ac</i> <	< 0, 4 – 8 < 0	DM1	solve us complet	or use of discriminations sing the formula, o the the square in orce eal roots.	r attempt to
No real so	plutions (so det $\mathbf{C} \neq 0$)	A1 [4]		correct reasoning of e no real roots.	or statement that

	Pag	e 10		Mark Scher	ne			Syllabus	Paper			
				GCE O LEVEL – October/	Noven	013	4037	12				
12	(a)	(i)	f(-1	(0) = 299, f(8) = 191	M1		M1 for substitution of either $x = -10$ or					
			Mir	point at $(0, -1)$ or when $y = -1$	B1			may be seen on diag				
								y be implied from a non diagram	tinal answer, may			
			: r	ange $-1 \le y \le 299$	A1			ave \leq for A1, do not	ot allow x			
					111	[3]	ividst i					
		(ii)	$x \ge$	0 or equivalent	B1			any domain which	will make f a			
						[1]		e function the upper and lower	hound whon			
							necess					
				(r+2)								
	(b)	(i)	g^{-1}	$(x) = \ln\left(\frac{x+2}{4}\right)$	M1			complete method				
								e function, must inv				
				$(\mathbf{x}+2)$			approp	riate. May still be	in terms of y.			
				$\frac{\lg\left(\frac{x+2}{4}\right)}{\lg\left(\frac{x+2}{4}\right)}$	A1		A1 mu	st be in terms of x				
			or	lge		[2]						
				5								
		(ii)	gh($f(x) = g(1n5x)$ $= 4e^{1n5x} - 2$	M1			correct order				
				$=4e^{1n5x}-2$	A1				$4e^{\ln 5x} - 2$			
			20r	-2 = 18, x = 1	A1				and compact			
			201	-2 - 10, x - 1	AI	[3]						
						[~]						
				$h(x) = g^{-1}(18)$	M1		M1 for correct order A1 for correct equation A1 for correct solution from correct					
			1	n5x = 1n5	A1							
			lead	ling to $x = 1$	A1							
			icut		111		worki					
								0				