MARK SCHEME for the October/November 2013 series

4037 ADDITIONAL MATHEMATICS

4037/13 Paper 1, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	GCE O LEVEL – October/November 2013	4037	13

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Accuracy mark for a correct result or statement independent of method marks.

When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.

The symbol $\sqrt{}$ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.

Note: B2 or A2 means that the candidate can earn 2 or 0. B2, 1, 0 means that the candidate can earn anything from 0 to 2.

	Page 3		Mark Scheme GCE O LEVEL – October/November 2013		Syllabus	Paper	
		GCE O LEVEL	<u> – October/Noven</u>	nber 2013	4037	13	
1	(i) ${}^{6}C_{2}(2^{4})(px)^{2} \text{ or } \binom{6}{2} 2^{4}(px)^{2}$ $240 p^{2} = 60$ $p = \frac{1}{2}$				Seen or implied, unsimplified M1 for their coefficient of $x^2 = 60$ and atten to solve		
	(ii) coeffi	cients of the terms need	ed M1	M1 for rea	alising that 2 terms	are involved	
	(-1) 6	$C_1(2)^5 p + (3 \times 60)$	B1	B1 for (-1	B1 for $(-1)^{6}C_{1}(2)^{5} p$ or $-192p$, using their p		
	= 84		A1 [3]]			
2	$lg = \frac{1}{5y}$	$\frac{v^2}{+60} = \lg 10$	B1 B1		$g y = lg y^{2}$ = lg10 or equivalent	, allow when seen	
	Or $\lg y^2 =$	= 1g10 (5y + 60)	M1		e of $\log A - \log B =$ $\log B = \log AB$	logA/B	
	$y^2 - 50y - 600 = 0$ leading to $y = -10, 60$ y must be positive so $y = 60$			and an att	forming a 3 term qu empt to solve = 60 only	adratic equation	

Page 4	Mark Sch	eme		Syllabus	Paper
	GCE O LEVEL – Octobe	r 2013	4037	13	
		1	I		
3 $\tan^2\theta - \sin^2\theta$		Marks are awarded only if they can lead to a complete proof for the methods other than those shown below			
	$=\frac{\sin^2\theta-\sin^2\theta\cos^2\theta}{\cos^2\theta}$	M1	M1 for de	ealing with tan and	a fraction
	$=\frac{\sin^2\theta(1-\cos^2\theta)}{\cos^2\theta}$	M1	M1 for fa	ctorising	
	$=\frac{\sin^4\theta}{\cos^2\theta}$	M1	M1 for us	se of identity $\cos^2 \theta$	$\theta + \sin^2 \theta = 1$
	A1 [4]	A1 for all correct			
Alt solution 1					
Using $\tan^2 \theta = \sin^2 \theta$	$\theta \sec^2 \theta$				
LHS = $\sin^2 \theta s$ = $\sin^2 \theta (s)$ = $\sin^2 \theta t$	$\sec^2 \theta - 1$)	M1 M1 M1	M1 use of $tan^2 x = sin^2 xsec^2 x$ M1 for factorising M1 for use of identity		
$=\sin^4 \theta$	$\sec^2 \theta$	A1	A1 for all correct		
Alt solution 2					
RHS = $\sin^4 \theta s$	$ec^2 \theta$				
$=\frac{\sin^2\theta}{\cos^2\theta}$	$\frac{\sin^2\theta}{2\theta}$	M1	M1 for splitting $\sin^4 \theta$ and use of identity		se of identity
$=\frac{\sin^2\theta(1-\cos^2\theta)}{\cos^2\theta}$		M1	M1 for multiplication		
$=\frac{\sin^2\theta}{2}$	M1	M1 for w	riting as two terms	and cancelling	
$=\frac{\sin^2\theta}{\cos^2\theta}$	A1	A1 for all correct			
$=\tan^2\theta$ -	$-\sin^2 \theta$				

Page 5		Mark Scheme		Syllabus	Paper
	GCE O LEVEL – Octobe	r/Novembe	r 2013	4037	13
4 (i) $\frac{dy}{dx} = \frac{(x+x)^2}{(x+x)^2}$	$\frac{(x+3)^2 2e^{2x} - e^{2x} 2(x+3)}{(x+3)^4}$	M1		tempt at quotient ru	ıle
		A2, 1, 0	-1 for eac	ch error	
$=\frac{2e^2}{(x)}$	$(x+2)^{(x+2)}, A=2$	A1 [4]	Must be convinced of correct simplification e.g. sight of $(x + 3 - 1)$ or $(x + 2)(x + 3)$		
Alt solution		ניין			
den ()				
$\frac{\mathrm{d}y}{\mathrm{d}x} = \mathrm{e}^{2\mathrm{x}} \left(-2\right)$	$((x+3)^{-3}) + 2e^{2x}(x+3)^{-2}$	M1	M1 for at	tempt at product ru	le
a ² r (A2,1,0	-1 for eac	h error	
$=\frac{2e^{2x}(x+1)}{(x+3)}$	$(\frac{-2}{3}), A = 2$	A1		onvinced of correct of $(x + 3 - 1)$ or $(x + 3 - 1)$	-
(ii) $x = -2, y$	$= e^{-4}$	B1, B1 [2]	Accept 1/	e ⁴	
5 (i) $f^{2}(x) = f$	$(2x^3)$				
=2	$2(2x^3)^3$ or $2(2(\frac{1}{2})^3)^3$	M1	M1 for =	$2(2x^3)^3$ or $2\left(2\left(\frac{1}{2}\right)^3\right)$	³) ³
=	2 ⁻⁵	A1	For 2 ⁻⁵ onl	У	
		[2]			
Alt method					
$f\left(\frac{1}{2}\right) = \frac{1}{4}$	$f\left(\frac{1}{4}\right) = 2^{-5}$	M1	M1 for f o	of their f $\left(\frac{1}{2}\right)$	
		A1	For 2 ⁻⁵ onl	· · /	
(ii) $f'(x) = g$ $6x^2 = 4 - 4$	(x) = 10x	B1 B1	B1 for 6 <i>x</i> B1 for 4 -		
Leading	to $(3x-1)(x+2) = 0$	M1			equation obtained
$x = \frac{1}{3}, -2$	2	A1 [4]	from diffe A1 for bo	erentiation of both th	

	Page 6	Ma	ark Scheme		Syllabus	Paper
	-	GCE O LEVEL -	October/Novembe	er 2013	4037	13
				1		
6	Area under the	e curve:				
	$\int_{0}^{\sqrt{2}} 4 - x^2 \mathrm{d}x = \left[\right]$	M1 A1	M1 for at	tempt to integrate		
	=	DM1	DM1 for	application of limits		
	=	$=\frac{10\sqrt{2}}{3}$				
	Area of trapez	ium =				
	$\frac{1}{2}(4+2)(\sqrt{2}) =$ Shaded area =	$=3\sqrt{2}$	B1	B1 for are	ea of trapezium, allo	w unsimplified
	Shaded area =	$\frac{10\sqrt{2}}{3} - 3\sqrt{2}$	M1	M1 for subtraction of the two areas		
	Shaded area =	A1 [6]	Must be i	n this form		
	Or : Equation of ch	ord:				
	$y = 4 - \sqrt{2x}$		B1	B1 for the	e equation of the cho	ord unsimplified
	Shaded area = $\int_{0}^{\sqrt{2}} 4 - x^2 - 4 + \sqrt{2}x dx$		M1 M1	M1 for su M1 for at	btraction tempt to integrate	
	$\left[\frac{\sqrt{2}}{2}x^2 - \frac{x^3}{3}\right]$	$\int_{0}^{\sqrt{2}} = \frac{\sqrt{2}}{3}$	√A1	$\sqrt{A1}$ for $\left[-m\frac{x^2}{2}-\frac{x^3}{3}\right]$ or equivalent, when		
		~	DM1 A1 [6]	<i>m</i> is the g	radient of their chor application of limits	d

Page 7			Mark Sche	Syllabus	Paper		
			GCE O LEVEL – Octobe	r/Novemb	er 2013	4037	13
7	(i)	$2t^2 - 2(t^2)$	-t+1)	B1	Correct d	eterminant seen uns	implified
		Leading t	0, $t = \frac{3}{2}$	M1 A1 [3]	M1 for simplification and solution A1 for solution of det A =1only, not 1/de		
	(ii)	$\mathbf{A} = \begin{pmatrix} 6\\7 \end{pmatrix}$	$\binom{2}{3}, \mathbf{A}^{-1} = \frac{1}{4} \begin{pmatrix} 3 & -2 \\ -7 & 6 \end{pmatrix}$	B1, B1	B1 for $\frac{1}{4}$,	B1 for matrix	
		$\begin{pmatrix} 6 & 2 \\ 7 & 3 \end{pmatrix} \begin{pmatrix} 2 \\ 2 \end{pmatrix}$	$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 10 \\ 11 \end{pmatrix}$	B1	B1 for de	aling correctly with	the factor of 2
		$\begin{pmatrix} x \\ y \end{pmatrix} = \frac{1}{4} \begin{pmatrix} x \\ y \end{pmatrix}$	$\begin{pmatrix} 3 & -2 \\ -7 & 6 \end{pmatrix} \begin{pmatrix} 10 \\ 11 \end{pmatrix}$	M1	M1 for pr	e-multiplying their	$\binom{10}{11}$ by their
					\mathbf{A}^{-1} to obt	tain a column matrix	x
		$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 2 \\ - 1 \end{pmatrix}$), leading to $x = 2, y = -1$	A1 [5]	Allow $\begin{pmatrix} x \\ y \end{pmatrix}$	$\binom{2}{-1} = \binom{2}{-1}$ for A1	
8	(i)	$\frac{1}{2}(4^2)$ sin	$\theta = 7.5$	M1	M1 for at and equat	tempt to find the are te to 7.5	ea of the triangle
		$\sin\theta = \frac{15}{16}$	$\theta = 1.215$	A1 [2]		lution to obtain the must include 1.2153	-
	(ii)	$\sin\frac{\theta}{2} = \frac{1}{2}$	$\frac{-CD}{4}$, (CD = 4.567)	M1	M1 for at	tempt to find <i>CD</i>	
		Arc lengt	h = 6(1.215)	B1	B1 for are	c length	
		Perimeter	= 2 + 2 + 6(1.215) + their CD	M1	M1 for su	m of 4 appropriate	lengths
			= awrt 15.9	A1 [4]			
	(iii)	Area = $\frac{1}{2}$	$6^{2}(1.215) - 7.5$	B1 M1	B1 for set M1 for su	ctor area abtraction of the 2 at	reas
		= 14	4 (awrt)	A1 [3]			

Page 8		Mark Scheme			Syllabus Paper		
		GCE O LEVEL – Octobe	r/Novembe	r 2013	4037	13	
	$6\cos^2$ ($3\cos^2$)	$\cos^{2} x) = 5 + \cos x$ x + cos x - 1=0 x - 1) (2 cos x + 1) =0 5° x = 120°	M1 M1 A1, A1	M1 for sol and attemp	e of $\sin^2 x = (1 - \cos x)$ lution of a 3 term q pt at solution of a tr ch correct solution	uadratic in cos	
			[4]				
(ii)	$\cos x =$	$=\sin y$					
	sin y =	$=\frac{1}{3}$ only so	DM1		relating $\cos x$ and si ethod of solution	n y or other	
	<i>y</i> =	19.5°, 160.5°	√A1, √A1 [3]				
(b) cot <i>z</i>	z (4 cot	(z-3)=0	M1	M1 for att	empt to use a factor		
cot z	z=0,	$z = \frac{\pi}{2}$	B1	B1 for $\frac{\pi}{2}$	(1.57)		
cot z	$z = \frac{3}{4}, 1$	$\tan z = \frac{4}{3}$ so $z = 0.927$	M1 A1 [4]	M1 dealing with cot and attempt at sol			
10 (i) lg <i>s</i>			B1	Allow in t	able or on graph if	no contradiction	
(ii)			[1]	<u>No marks</u> <u>lnt</u> against	for graph unless lg. (lns)	<u>t against lgs (or</u>	
			M1 DM1 A1 [3]	DM1 for a A1 all poin	or more points correct a line through 3 or 4 nts correct with a st at least from first p	correct points raight line	
(iii) <u>No r</u>	narks i	n this part unless lgt v lgs					
	<u>h is use</u> dient : <i>r</i>	$\frac{\text{ed}}{n} = -2 \text{ (allow } -2.1 \rightarrow -1.9)$	M1A1	M1 calcul A1 for $n =$	ates gradient = -2		
Inter $k = 1$	-	og k, or other method (allow $90 \rightarrow 120$)	M1, A1 [4]		e of intercept and d correctly (can use a	•	
Alt method Using simulta lie on the plot		equations, points used must	M2 A1, A1	Must atter $k = 100$ and	npt to solve 2 valid ad $n = -2$	equations.	
		1g t = 0.6 so $1g s = 0.69low 4.8 \rightarrow 5.2)$	M1 A1 [2]		lid method using ei sing $lgt = nlgs + lg$ l their k		

Page 9	Mark Scheme			Syllabus	Paper	
	GCE O LEVEL – Octobe	r/Novembe	r 2013	4037	13	
11 (i) $\left[e^{2x} + \frac{5}{4}\right]$	1 (i) $\left[e^{2x} + \frac{5}{4}e^{-2x}\right]_0^k$			ch term integrated c ied	orrectly, allow	
$\left(e^{2k}+\frac{5}{4}\right)$	$\left(e^{2k} + \frac{5}{4}e^{-2k}\right) - \left(1 + \frac{5}{4}\right) = 3$			M1 for application of limits to an integral of the form $Ae^{2x} \pm Be^{-2x}$		
$e^{2k} + \frac{5}{4}e^{-\frac{5}{4}}$	$-2k - \frac{12}{4} = 0$	M1	to obtain	puating to $\frac{3}{4}$ and att a 3 term equation. M f the form $Ae^{2x} \pm Be^{2x}$	Aust be using an	
$4e^{4k} - 12e^{4k}$	$e^{2k} + 5 = 0$	A1 [5]		iven, so must be co		
(ii) $4y^2 - 12y$	+ 5 =0	M1	M1 for so	lution of quadratic	equation	
	$e^{2k} = \frac{5}{2}, e^{2k} = \frac{1}{2}$	M1	exponenti		olving	
<i>k</i> = 0.458	, -0.347	A1, A1 [4]	A1 for ea	ch		