CAMBRIDGE INTERNATIONAL EXAMINATIONS

Cambridge Ordinary Level

MARK SCHEME for the May/June 2015 series

4037 ADDITIONAL MATHEMATICS

4037/11 Paper 1, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2015 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

Page 2	Mark Scheme S		Paper
	Cambridge O Level – May/June 2015	4037	11

Abbreviations

awrt answers which round to cao correct answer only

dep dependent

FT follow through after error isw ignore subsequent working

oe or equivalent

rot rounded or truncated

SC Special Case soi seen or implied

www without wrong working

1 (i)	180° or π radians or 3.14 radians (or better)	B1	
(ii)	2	B 1	
(iii) (a)		B 1	$y = \sin 2x$ all correct
(b)		B1 B1	for either $\uparrow\downarrow\uparrow$ starting at their highest value and ending at their lowest value Or a curve with highest value at $y=3$ and lowest value at $y=-1$ completely correct graph
(iv)	3	B 1	
2 (i)	$\tan \theta = \frac{\left(8 + 5\sqrt{2}\right)\left(4 - 3\sqrt{2}\right)}{\left(4 + 3\sqrt{2}\right)\left(4 - 3\sqrt{2}\right)}$ $= \frac{32 - 24\sqrt{2} + 20\sqrt{2} - 30}{16 - 18}$ $= 1 + 2\sqrt{2} \text{cao}$	M1	attempt to obtain $\tan \theta$ and rationalise. Must be convinced that no calculators are being used

Page 3	Mark Scheme		Paper
	Cambridge O Level – May/June 2015	4037	11

(ii)	$\sec^2\theta = 1 + \tan^2\theta$		
	$=1+\left(-1+2\sqrt{2}\right)^{2}$	M1	attempt to use $\sec^2 \theta = 1 + \tan^2 \theta$, with their answer to (i)
	$= 1 + 1 - 4\sqrt{2} + 8$	DM1	attempt to simplify, must be convinced no calculators are being used.
	$=10-4\sqrt{2}$	A1	Need to expand $\left(-1+2\sqrt{2}\right)^2$ as 3 terms
	Alternative solution:		terms
	$AC^2 = (4+3\sqrt{2})^2 + (8+5\sqrt{2})^2$		
	$=148+104\sqrt{2}$		
	$\sec^2 \theta = \frac{148 + 104\sqrt{2}}{\left(4 + 3\sqrt{2}\right)^2}$	M1	
	$= \frac{148 + 104\sqrt{2}}{\left(4 + 3\sqrt{2}\right)^2} \times \frac{34 - 24\sqrt{2}}{34 - 24\sqrt{2}}$	DM1	
	$=10-4\sqrt{2}$	A1	
3 (i)	$64 + 192x^2 + 240x^4 + 160x^6$	B3,2,1,0	−1 each error
(ii)	$\left(64 + 192x^2 + 240x^4\right)\left(1 - \frac{6}{x^2} + \frac{9}{x^4}\right)$	B1	expansion of $\left(1 - \frac{3}{x^2}\right)^2$
	Terms needed $64 - (192 \times 6) + (240 \times 9)$	M1	attempt to obtain 2 or 3 terms using their (i)
	= 1072	A1	(-)

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge O Level – May/June 2015	4037	11

4 (a)	$\mathbf{X}^2 = \begin{pmatrix} 4 - 4k & -8 \\ 2k & -4k \end{pmatrix}$	B2,1,0	-1 each incorrect element
(b)	Use of $\mathbf{A}\mathbf{A}^{-1} = \mathbf{I}$ $\begin{pmatrix} a & 1 \\ b & 5 \end{pmatrix} \begin{pmatrix} \frac{5}{6} & -\frac{1}{6} \\ -\frac{2}{3} & \frac{1}{2} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$	M1	use of $AA^{-1} = I$ and an attempt to obtain at least one equation.
	Any 2 equations will give $a = 2$, $b = 4$	A1,A1	
	Alternative method 1: $\frac{1}{5a-b} \begin{pmatrix} 5 & -1 \\ b & a \end{pmatrix} = \begin{pmatrix} \frac{5}{6} & -\frac{1}{6} \\ -\frac{2}{3} & \frac{1}{3} \end{pmatrix}$	M1	correct attempt to obtain A ⁻¹ and comparison of at least one term.
	Compare any 2 terms to give $a = 2$, $b = 4$ Alternative method 2:	A1,A1	
	Inverse of $\frac{1}{6} \begin{pmatrix} 5 & -1 \\ -4 & 2 \end{pmatrix} = \begin{pmatrix} 2 & 1 \\ 4 & 5 \end{pmatrix}$	M1 A1,A1	reasoning and attempt at inverse
5	$3x-1 = x(3x-1) + x^{2} - 4 \text{ or}$ $y = \left(\frac{y+1}{3}\right)y + \left(\frac{y+1}{3}\right)^{2} - 4$		
	$4x^{2}-4x-3=0 \text{ or } 4y^{2}-4y-35=0$ $(2x-3)(2x+1)=0 \text{ or } (2y-7)(2y+5)=0$	M1 DM1	equate and attempt to obtain an equation in 1 variable forming a 3 term quadratic equation and attempt to solve
	leading to $x = \frac{3}{2}, x = -\frac{1}{2}$ and $y = \frac{7}{2}, y = -\frac{5}{2}$	A1 A1	x values
	Midpoint $\left(\frac{1}{2}, \frac{1}{2}\right)$	B1	y values for midpoint, allow anywhere
	Perpendicular gradient = $-\frac{1}{3}$	M1	correct attempt to obtain the gradient of the perpendicular, using AB
	Perp bisector: $y - \frac{1}{2} = -\frac{1}{3} \left(x - \frac{1}{2} \right)$	M1	straight line equation through the midpoint; must be convinced it is a perpendicular gradient.
	(3y+x-2=0)	A1	allow unsimplified

Page 5	Mark Scheme		Paper
	Cambridge O Level – May/June 2015	4037	11

		1	
6 (i)	$f\left(\frac{1}{2}\right) = \frac{a}{8} - \frac{15}{4} + \frac{b}{2} - 2 = 0$ leading to $a + 4b = 46$	M1	correct use of either $f\left(\frac{1}{2}\right)$ or $f(1)$ paired correctly
	f(1) = $a - 15 + b - 2 = 5$		paned correctly
	leading to $a+b=22$	A1	both equations correct (allow unsimplified)
	giving $b = 8$ (AG), $a = 14$	M1,A1	M1 for solution of equations A1 for both <i>a</i> and <i>b</i> . AG for <i>b</i> .
(ii)	$(2x-1)(7x^2-4x+2)$	M1,A1	M1 for valid attempt to obtain $g(x)$, by either observation or by algebraic long division.
(iii)	$7x^2 - 4x + 2 = 0$ has no real solutions as	M1	use of $b^2 - 4ac$
	$b^2 < 4ac$ $16 < 56$	A1	correct conclusion; must be from a correct $g(x)$ or $2g(x)$ www
	$\frac{dy}{dx} = \frac{(x-1)\frac{8x}{(4x^2+2)} - \ln(4x^2+3)}{(x-1)^2}$	M1	differentiation of a quotient (or product)
7 (i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{(4x + 2)}{(x-1)^2}$	B1 A1	correct differentiation of $ln(4x^2 + 3)$ all else correct
	When $x = 0$, $y = -\ln 3$ oe	B1	for y value
	$\frac{dy}{dx} = -\ln 3 \text{ so gradient of normal is } \frac{1}{\ln 3}$ (allow numerical equivalent)	M1	valid attempt to obtain gradient of the normal
	normal equation $y + \ln 3 = \frac{1}{\ln 3}x$	M1	attempt at normal equation must be using a perpendicular
	or $y = 0.910x - 1.10$, or $y = \frac{10}{11}x - \frac{11}{10}$ cao	A1	
	(Allow $y = 0.91x - 1.1$)		
(ii)	when $x = 0$, $y = -\ln 3$ when $y = 0$, $x = (\ln 3)^2$	M1	valid attempt at area
	Area = ± 0.66 or ± 0.67 or awrt these or $\frac{1}{2}(\ln 3)^3$	A1	

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge O Level – May/June 2015	4037	11

8 (i)	Range for f: $y \ge 3$ Range for g: $y \ge 9$	B1 B1	
(ii)	$x = -2 + \sqrt{y - 5}$	M1	attempt to obtain the inverse function
	$g^{-1}(x) = -2 + \sqrt{x - 5}$ Domain of g^{-1} : $x \ge 9$	A1 B1	Must be correct form for domain
	Alternative method: $y^2 + 4y + 9 - x = 0$ $y = \frac{-4 + \sqrt{16 - 4(9 - x)}}{2}$	M1 A1	attempt to use quadratic formula and find inverse must have + not ±
(iii)	Need $g(3e^{2x})$ $(3e^{2x} + 2)^2 + 5 = 41$	M1 DM1	correct order correct attempt to solve the equation
	or $9e^{4x} + 12e^{2x} - 32 = 0$ $(3e^{2x} - 4)(3e^{2x} + 8) = 0$ leading to $3e^{2x} + 2 = \pm 6$ so $x = \frac{1}{2} \ln \frac{4}{3}$	M1	dealing with the exponential correctly
	or $e^{2x} = \frac{4}{3}$ so $x = \frac{1}{2} \ln \frac{4}{3}$	A1	in order to reach a solution for <i>x</i> Allow equivalent logarithmic forms
	Alternative method: Using $f(x) = g^{-1}(41)$, $g^{-1}(41) = 4$ leading to $3e^{2x} = 4$, so $x = \frac{1}{2} \ln \frac{4}{3}$	M1 DM1 M1 A1	correct use of g^{-1} dealing with $g^{-1}(41)$ to obtain an equation in terms of e^{2x} dealing with the exponential correctly in order to reach a solution for x Allow equivalent logarithmic forms
(iv)	$g'(x) = 6e^{2x}$ $g'(\ln 4) = 96$	B1 B1	B1 for each

Page 7	Mark Scheme	Syllabus	Paper
	Cambridge O Level – May/June 2015	4037	11

	dv		
9 (i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 3x^2 - 10x + 3$	M1	for differentiation
	When $x = 0$, for curve $\frac{dy}{dx} = 3$,		
	gradient of line also 3 so line is a tangent.	A1	comparing both gradients
	Alternate method:		
	$3x + 10 = x^3 - 5x^2 + 3x + 10$	M1	attempt to deal with simultaneous equations
	leading to $x^2 = 0$, so tangent at $x = 0$	A1	obtaining $x = 0$
(ii)	When $\frac{dy}{dx} = 0$, $(3x-1)(x-3) = 0$	M1	equating gradient to zero and valid attempt to solve
	$x = \frac{1}{3}, x = 3$	A1,A1	A1 for each
	, and the second		
(iii)	Area = $\frac{1}{2}(10+19)3 - \int_0^3 x^3 - 5x^2 + 3x + 10 dx$	B1	area of the trapezium
	$= \frac{87}{2} - \left[\frac{x^4}{4} - \frac{5x^3}{3} + \frac{3x^2}{2} + 10x \right]_0^3$	M1	attempt to obtain the area enclosed by the curve and the coordinate axes, by
	$=\frac{87}{2} - \left(\frac{81}{4} - 45 + \frac{27}{2} + 30\right)$	A1 DM1	integration integration all correct correct application of limits
	= 24.7 or 24.8	A1	(must be using <i>their</i> 3 from (ii) and 0)
	Alternative method:		
	Area = $\int_0^3 (3x+10) - (x^3 - 5x^2 + 3x + 10) dx$	B1	correct use of 'Y-y'
	$= \int_0^3 -x^3 + 5x^2 dx$	M1 A1	attempt to integrate integration all correct
	$= \left[-\frac{x^4}{4} + \frac{5x^3}{3} \right]_0^3 = \frac{99}{4}$	DM1 A1	correct application of limits
10 (a)	$\sin^2 x = \frac{1}{4}$		
	$\sin x = (\pm)\frac{1}{2}$	M1	using $\csc x = \frac{1}{\sin x}$ and obtaining
	$x = 30^{\circ}, 150^{\circ}, 210^{\circ}, 330^{\circ}$	A1,A1	$\sin x =$ A1 for one correct pair, A1 for another correct pair with no extra solutions

Page 8	Mark Scheme	Syllabus	Paper
	Cambridge O Level – May/June 2015	4037	11

(b)	$(\sec^2 3y - 1) - 2\sec 3y - 2 = 0$ $\sec^2 3y - 2\sec 3y - 3 = 0$ $(\sec 3y + 1)(\sec 3y - 3) = 0$ leading to $\cos 3y = -1$, $\cos 3y = \frac{1}{3}$ $3y = 180^\circ, 540^\circ 3y = 70.5^\circ, 289.5^\circ, 430.5^\circ$	M1 M1 M1	use of the correct identity attempt to obtain a 3 term quadratic equation in sec 3y and attempt to solve dealing with sec and 3y correctly A1 for a correct pair, A1 for a second
	$y = 60^{\circ}, 180^{\circ}, 23.5^{\circ}, 96.5^{\circ}, 143.5^{\circ}$ Alternative 1:	A1,A1	correct pair, A1 for correct 5 th solution and no other within the range
	$\sec^2 3y - 2\sec 3y - 3 = 0$	M1	use of the correct identity
	leading to $3\cos^2 3y + 2\cos 3y - 1$	M1	attempt to obtain a quadratic equation in cos 3 <i>y</i> and attempt to solve
	$(3\cos y - 1)(\cos y + 1) = 0$	M1	dealing with 3y correctly A marks as above
	Alternative 2: $\frac{\sin^2 y}{\cos^2 y} - \frac{2}{\cos y} - 2 = 0$ $(1 - \cos^2 x) - 2\cos x - 2\cos^2 x = 0$	M1	use of the correct identity, $\tan y = \frac{\sin y}{\cos y}$ and $\sec y = \frac{1}{\cos y}$, then as before
(c)	$z-\frac{\pi}{3}=\frac{\pi}{3},\frac{4\pi}{3}$	M1	correct order of operations
	$z = \frac{2\pi}{3}, \frac{5\pi}{3}$ or 2.09 or 2.1, 5.24	A1,A1	A1 for a correct solution A1 for a second correct solution and no other within the range