<u>Series – 2020 O Level Additional Math</u>

1. Nov/2020/Paper_12/No.4

The 7th and 10th terms of an arithmetic progression are 158 and 149 respectively.

(a) Find the common difference and the first term of the progression.

[3]

(b) Find the least number of terms of the progression for their sum to be negative.

abridge

[3]

2. Nov/2020/Paper_12/No.5

Find the coefficient of x^2 in the expansion of $\left(x - \frac{3}{x}\right)\left(x + \frac{2}{x}\right)^5$.

[5]

Nov/2020/Paper_13/No.5

Given that the coefficient of x^2 in the expansion of $(1+x)\left(1-\frac{x}{2}\right)^n$ is $\frac{25}{4}$, find the value of the positive integer n.

4. Nov/2020/Paper_22/No.7

A geometric progression has a first term of 3 and a second term of 2.4. For this progression, find

(a) the sum of the first 8 terms, [3]

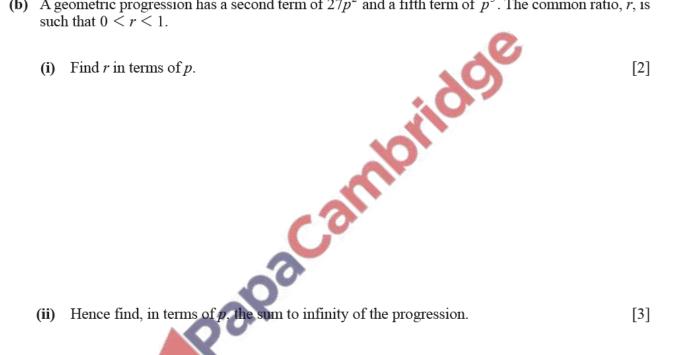
(b) the sum to infinity,

[1]

(c) the least number of terms for which the sum is greater than 95% of the sum to infinity.

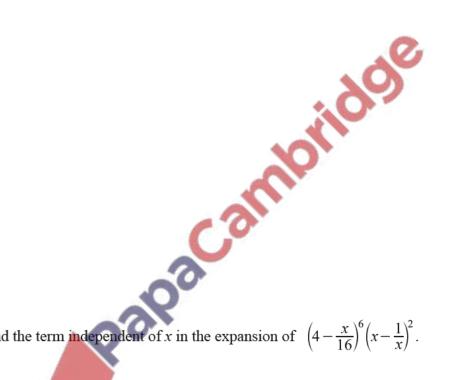
[4]

5. Nov/2020/Paper_23/No.10


(a) The sum of the first 4 terms of an arithmetic progression is 38 and the sum of the next 4 terms is 86. Find the first term and the common difference. [5]

6.	Luna	/2020	Danar	111	NIO O
Ο.	June/	2020	/Paper_	/	NO.9

(a) An arithmetic progression has a second term of -14 and a sum to 21 terms of 84. Find the first term and the 21st term of this progression. [5]


- **(b)** A geometric progression has a second term of $27p^2$ and a fifth term of p^5 . The common ratio, r, is such that 0 < r < 1.
 - [2] (i) Find r in terms of p.

[2] (iii) Given that the sum to infinity is 81, find the value of p.

7. June/2020/Paper_12/No.3

(a) Find the first 3 terms in the expansion of $\left(4 - \frac{x}{16}\right)^6$ in ascending powers of x. Give each term in its simplest form.

(b) Hence find the term independent of x in the expansion of $\left(4 - \frac{x}{16}\right)^6 \left(x - \frac{1}{x}\right)^2$. [3]

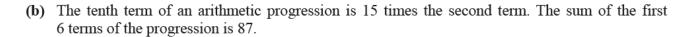
- (a) Expand $(2-x)^5$, simplifying each coefficient. [3]

[4]

- Palpacambridge
- **(b)** Hence solve $\frac{e^{(2-x)^5} \times e^{80x}}{e^{10x^4+32}} = e^{-x^5}$.

9. June/2020/Paper_22/No.10

(a) The first 5 terms of a sequence are given below.


1 -0.50.25

Find the 20th term of the sequence.

[2]

(ii) Explain why the sum to infinity exists for this sequence and find the value of this sum. [2]

for this sequence

(i) Find the common difference of the progression. [4]

[3]