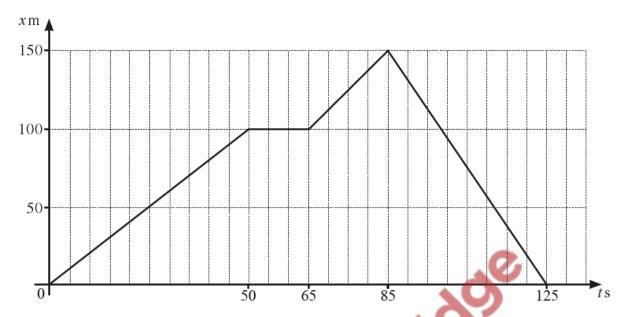

Straight line graphs – 2020 O Level Additional Math

1. Nov/2020/Paper_12/No.12

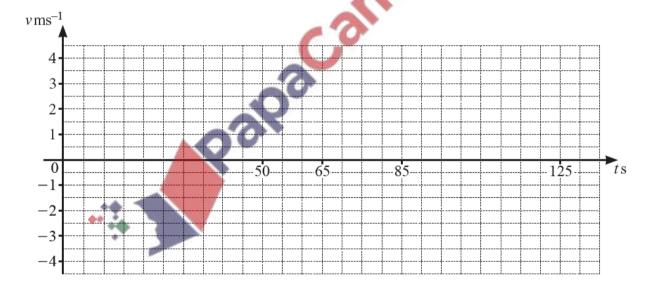
The diagram shows the velocity–time graph of a particle P that travels 2775 m in 90 s, reaching a final velocity of V ms⁻¹.

(ii) Write down the acceleration of P when t = 40. [1]


- **(b)** The acceleration, $a \text{ ms}^{-2}$, of a particle Q travelling in a straight line, is given by $a = 6 \cos 2t$ at time t = 0 the particle is at point Q and is travelling with a velocity of 10 ms^{-1} .
 - (i) Find the velocity of Q at time t.

[3]

2. Nov/2020/Paper_13/No.4

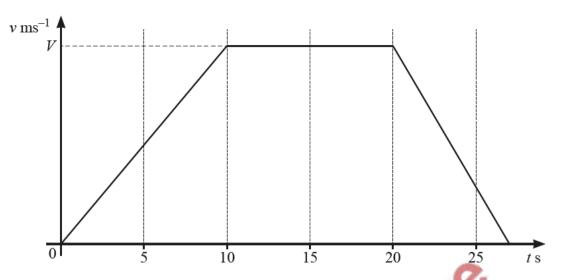

(a)

The diagram shows the x-t graph for a runner, where displacement, x, is measured in metres and time, t, is measured in seconds.

(i) On the axes below, draw the v-t graph for the runner.

[3]

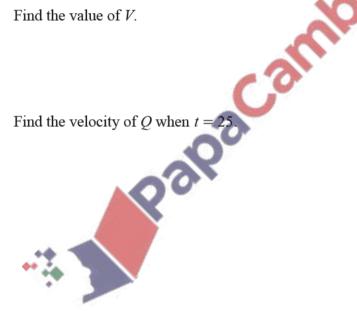
(ii) Find the total distance covered by the runner in 125 s.


[1]

(b) The displacement, x m, of a particle from a fixed point at time t s is given by $x = 6\cos\left(3t + \frac{\pi}{3}\right)$. [3]

June/2020/Paper_12/No.9b

(b)

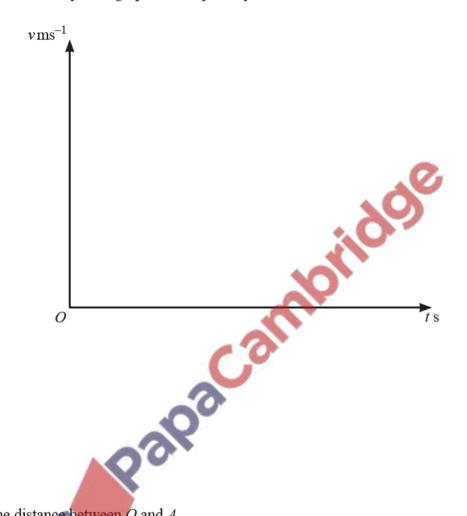

The diagram shows the velocity-time graph for a particle Q travelling in a straight line with velocity $v \, \mathrm{ms}^{-1}$ at time $t \, \mathrm{s}$. The particle accelerates at $3.5 \, \mathrm{ms}^{-2}$ for the first $10 \, \mathrm{s}$ of its motion and then travels at constant velocity, $V \, \mathrm{ms}^{-1}$, for $10 \, \mathrm{s}$. The particle then decelerates at a constant rate and comes to rest. The distance travelled during the interval $20 \le t \le 25$ is 112.5 m.

(i) Find the value of
$$V$$
.

[1]

(ii) Find the velocity of
$$Q$$
 when $t = 2$

[3]


(iii) Find the value of t when Q comes to rest.

[3]

4. June/2020/Paper_21/No.9

A particle travels in a straight line. As it passes through a fixed point O, the particle is travelling at a velocity of $3 \,\mathrm{ms}^{-1}$. The particle continues at this velocity for 60 seconds then decelerates at a constant rate for 15 seconds to a velocity of $1.6 \,\mathrm{ms}^{-1}$. The particle then decelerates again at a constant rate for 5 seconds to reach point A, where it stops.

(a) Sketch the velocity-time graph for this journey on the axes below. [3]

(b) Find the distance between O and A.

(c) Find the deceleration in the last 5 seconds.

[1]

[3]