<u>Trigonometry – 2020 O Level Additional Math</u>

- 1. Nov/2020/Paper_12/No.3
 - (a) Write down the amplitude of $2\cos\frac{x}{3} 1$. [1]
 - **(b)** Write down the period of $2\cos\frac{x}{3} 1$. [1]

[3]

2. Nov/2020/Paper_13/No.11

(a) Given that $2\cos x = 3\tan x$, show that $2\sin^2 x + 3\sin x - 2 = 0$. [3]

(b) Hence solve $2\cos\left(2\alpha + \frac{\pi}{4}\right) = 3\tan\left(2\alpha + \frac{\pi}{4}\right)$ for $0 < \alpha < \pi$ radians, giving your answers in [4]

- **3.** Nov/2020/Paper_22/No.11
 - (a) Show that $\frac{\sin x \tan x}{1 \cos x} = 1 + \sec x$.

[4]

(b) Solve the equation $5 \tan x - 3 \cot x = 2 \sec x$ for $0^{\circ} \le x \le 360^{\circ}$.

(a) Write down the period of $2\cos\frac{x}{3} - 1$.

[1]

[3]

(b) On the axes below, sketch the graph of $y = 2\cos\frac{x}{3} - 1$ for $-360^{\circ} \le x \le 360^{\circ}$.

- June/2020/Paper_11/No.10
 - (a) (i) Show that $\frac{1}{\sec \theta 1} \frac{1}{\sec \theta + 1} = 2 \cot^2 \theta.$

[3]

[5]

(b) Solve $\csc\left(y + \frac{\pi}{3}\right) = 2$ for $0 \le y \le 2\pi$ radians, giving your answers in terms of π . [4] **6.** June/2020/Paper_12/No.10

(a) Solve $\tan 3x = -1$ for $-\frac{\pi}{2} \le x \le \frac{\pi}{2}$ radians, giving your answers in terms of π . [4]

(b) Use your answers to part (a) to sketch the graph of $y = 4 \tan 3x + 4$ for $-\frac{\pi}{2} \le x \le \frac{\pi}{2}$ radians on the axes below. Show the coordinates of the points where the curve meets the axes.

7. June/2020/Paper_22/No.8

(a) Solve $3 \cot^2 x - 14 \csc x - 2 = 0$ for $0^{\circ} < x < 360^{\circ}$.

[5]

(b) Show that $\frac{\sin^4 y - \cos^4 y}{\cot y} = \tan y - 2\cos y \sin y.$ [4]