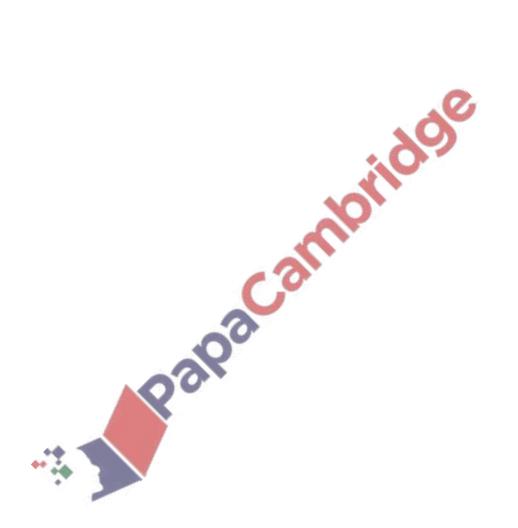

<u>Logarithmic and exponential functions – 2021 O Level Additional Math</u>

- 1. Nov/2021/Paper_12/No.3
 - (a) Write $3+2\lg a-4\lg b$ as a single logarithm to base 10.

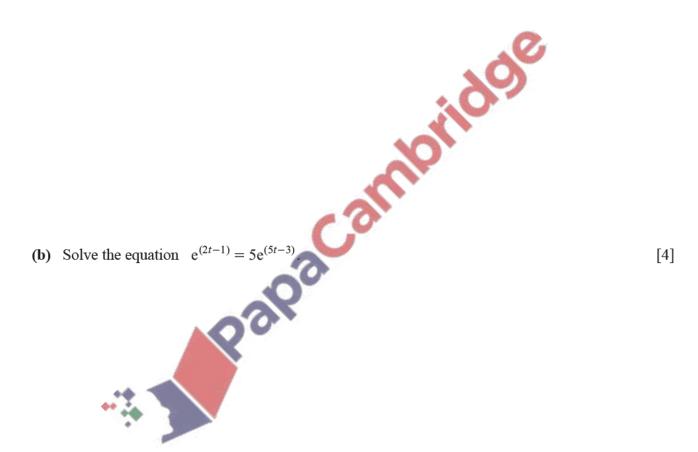
[4]



(b) Solve the equation $3 \log_a 4 + 2 \log_4 a$

[5]

2. Nov/2021/Paper_13/No.2


A particle moves in a straight line such that its velocity, $v \,\text{ms}^{-1}$, at time t seconds after passing through a fixed point O, is given by $v = e^{3t} - 25$. Find the speed of the particle when t = 1. [2]

3. Nov/2021/Paper_22/No.5

(a) Solve the following simultaneous equations.

$$e^{x} + e^{y} = 5$$

 $2e^{x} - 3e^{y} = 8$ [5]

Nov/2021/Paper_23/No.4

(a) Solve the equation $\log_6(2x-3) = \frac{1}{2}$. Give your answer in exact form.

[2]

-=9.**(b)** Solve the equation $\ln 2u - \ln (u - 4) = 1$. Give your answer in exact form.

[3]

(c) Solve the equation

[3]

- 5. June/2021/Paper_12/No.5
 - (a) Given that $\log_a p + \log_a 5 \log_a 4 = \log_a 20$, find the value of p. [2]

- **(b)** Solve the equation $3^{2x+1} + 8(3^x) 3 = 0$. [3]
- y = 4. (c) Solve the equation $4\log_y 2 + \log_2 y = 4$. [3]

6. June/2021/Paper_12/No.8

Variables x and y are such that $y = Ax^b$, where A and b are constants. When $\lg y$ is plotted against $\lg x$, a straight line graph passing through the points (0.61, 0.57) and (5.36, 4.37) is obtained.

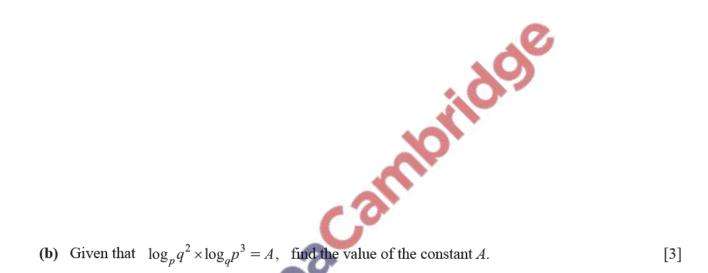
(a) Find the value of A and of b. [5]

Palpacamoridos Using your values of A and b, find

(b) the value of y when x = 3,

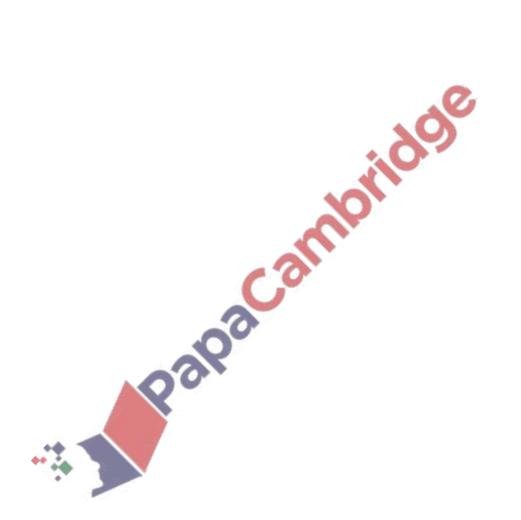
(c) the value of x when y = 3.

[2]


[2]

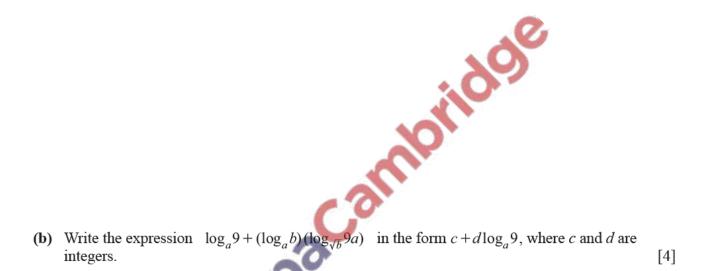
7. June/2021/Paper_14/No.6

(a) Solve the simultaneous equations

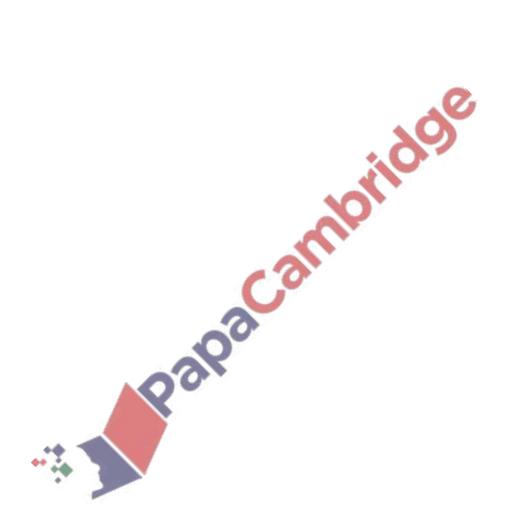

$$\log_a(x+y) = 0,$$

$$\log_a(x+1) = 2\log_a y.$$
 [4]

8. June/2021/Paper_21/No.2


Variables x and y are such that, when $\ln y$ is plotted against $\ln x$, a straight line graph passing through the points (6, 5) and (8, 9) is obtained. Show that $y = e^p x^q$ where p and q are integers. [4]

9. June/2021/Paper_21/No.8


In this question, a, b, c and d are positive constants.

- (a) (i) It is given that $y = \log_a(x+3) + \log_a(2x-1)$. Explain why x must be greater than $\frac{1}{2}$. [1]
 - (ii) Find the exact solution of the equation $\frac{\log_a 6}{\log_a (y+3)} = 2$. [3]

10. June/2021/Paper_24/No.3

Variables x and y are such that when $\lg y$ is plotted against $\lg x$ a straight line passing through the points (-1, -4) and (2, 11) is obtained. Show that $y = ax^n$, where a and n are integers. [6]

