Series - 2021 O Level Additional Math

- 1. Nov/2021/Paper_13/No.4
 - (a) Find the first three terms, in ascending powers of x^2 , in the expansion of $\left(\frac{1}{2} \frac{2}{3}x^2\right)^8$. Write your coefficients as rational numbers. [3]

[3]

2. Nov/2021/Paper_13/No.5

A geometric progression is such that its sum to 4 terms is 17 times its sum to 2 terms. It is given that the common ratio of this geometric progression is positive and not equal to 1.

(a) Find the common ratio of this geometric progression.

[3]

(b) Given that the 6th term of the geometric progression is 64, find the first term.

[2]

(c) Explain why this geometric progression does not have a sum to infinity.

[1]

- **3.** Nov/2021/Paper_22/No.2
 - (a) Expand $(2-3x)^4$, evaluating all of the coefficients.

[4]

(b) The sum of the first three terms in ascending powers of x in the expansion of $(2-3x)^4 \left(1+\frac{a}{x}\right)$ is $\frac{32}{x}+b+cx$, where a, b and c are integers. Find the values of each of a, b and c. [4]

4. Nov/2021/Paper_22/No.10	4.	Nov	/2021	/Paper	22/	No.10
-----------------------------------	----	-----	-------	--------	-----	-------

(a) The first three terms of an arithmetic progression are x, 5x-4 and 8x+2. Find x and the common difference.

(b) The first three terms of a geometric progression are y, 5y-4 and 8y+2.

Find the two possible values of *y*.

[4]

[2]

(ii) For each of these values of y, find the corresponding value of the common ratio.

5. Nov/2021/Paper_23/No.9

An arithmetic progression has first term a and common difference d. The third term is 13 and the tenth term is 41.

(a) Find the value of a and of d.

[4]

(b) Find the number of terms required to give a sum of 2555.

[4]

(c) Given that S_n is the sum to n terms, show that $S_{2k} - S_k = 3k(1+2k)$.

[4]

6. June/2021/Paper_11/No.4

The first 3 terms in the expansion of $(a+x)^3(1-\frac{x}{3})^5$, in ascending powers of x, can be written in the form $27+bx+cx^2$, where a, b and c are integers. Find the values of a, b and c. [8]

7. June/2021/Paper_12/No.9

(a) The first three terms of an arithmetic progression are -4, 8, 20. Find the smallest number of terms for which the sum of this arithmetic progression is greater than 2000. [4]

- **(b)** The 7th and 9th terms of a geometric progression are 27 and 243 respectively. Given that the geometric progression has a positive common ratio, find
 - (i) this common ratio, [2]

(ii) the 30th term, giving your answer as a power of 3. [2]

8. June/2021/Paper_14/No.3

(a) Find the first 3 terms in the expansion, in ascending powers of x, of $(a-3x)^{10}$, where a is a constant.

June/2021/Paper_21/No.11

The 2nd, 8th and 44th terms of an arithmetic progression form the first three terms of a geometric progression. In the arithmetic progression, the first term is 1 and the common difference is positive.

[5] (a) (i) Show that the common difference of the arithmetic progression is 5.

[2]

(ii) Find the sum of the first 20 terms of the arithmetic progression.

[2]

(ii) Explain whether or not the sum to infinity of this geometric progression exists.

[1]

11. June/2021/Paper_24/No.12

(a) The first term of an arithmetic progression is -5 and the fifth term is 7. Find the sum of the first [4] 40 terms of this progression.

(b) A geometric progression has third term of 8 and sixth term of 0.064. Find the sum to infinity of [4] this progression.

