<u>Straight line graphs – 2021 O Level Additional Math</u>

1. Nov/2021/Paper_12/No.11

(a)

The diagram shows the velocity–time graph for a particle P, travelling in a straight line with velocity $v \, \mathrm{ms}^{-1}$ at a time t seconds. P accelerates at a constant rate for the first 10 s of its motion, and then travels at constant velocity, $30 \, \mathrm{ms}^{-1}$, for another 15 s. P then accelerates at a constant rate for a further 10 s and reaches a velocity of $60 \, \mathrm{ms}^{-1}$. P then decelerates at a constant rate and comes to rest when t = 55.

(i) Find the acceleration when
$$t = 12$$
. [1]

(ii) Find the acceleration when
$$t = 50$$
. [1]

(iii) Find the total distance travelled by the particle
$$P$$
. [2]

- (b) A particle Q travels in a straight line such that its velocity, $v \,\text{ms}^{-1}$, at time ts after passing through a fixed point O is given by $v = 4 \cos 3t 4$.
 - (i) Find the speed of Q when $t = \frac{5\pi}{9}$. [2]

(ii) Find the smallest positive value of t for which the acceleration of Q is zero. [3]

2. Nov/2021/Paper_13/No.9

When e^{2y} is plotted against x^2 , a straight line graph passing through the points (4, 7.96) and (2, 3.76) is obtained.

(a) Find y in terms of x. [5]

(c) Using your equation from part (a), find the positive values of x for which the straight line exists. [3]

Nov/2021/Paper_22/No.8

Variables x and y are such that when \sqrt{y} is plotted against $\log_2(x+1)$, where x > -1, a straight line is obtained which passes through (2, 10.4) and (4, 15.4).

(a) Find
$$\sqrt{y}$$
 in terms of $\log_2(x+1)$. [4]

(c) Find the value of x when y = 25.

[3]

[1]

4. June/2021/Paper_11/No.7

(a) In this question, all lengths are in metres and time, t, is in seconds.

The diagram shows the displacement–time graph for a runner, for $0 \le t \le 40$.

(i) Find the distance the runner has travelled when t = 40.

[1]

(ii) On the axes, draw the corresponding velocity–time graph for the runner, for $0 \le t \le 40$. [2]

- **(b)** A particle, P, moves in a straight line such that its displacement from a fixed point at time t is s. The acceleration of P is given by $(2t+4)^{-\frac{1}{2}}$, for t>0.
 - (i) Given that P has a velocity of 9 when t = 6, find the velocity of P at time t. [3]

5. June/2021/Paper_21/No.5

The curves $y = x^2$ and $y^2 = 27x$ intersect at O(0, 0) and at the point A. Find the equation of the perpendicular bisector of the line OA. [8]

