<u>Vectors in two dimensions – 2022 O Level Additional Math</u>

- 1. June/2022/Paper_11/No.5
 - (a) Find the vector which is in the opposite direction to $\begin{pmatrix} 15 \\ -8 \end{pmatrix}$ and has a magnitude of 8.5. [2]

(b) Find the values of a and b such that $5\binom{3a}{b} + \binom{2a+1}{2} = 6\binom{b+a}{2}$. [3]

- 2. June/2022/Paper_12/No.4
 - (a) Find the unit vector in the same direction as $\binom{-15}{8}$. [2]

(b) Given that $\binom{2a}{-5} + \binom{4b-12}{3} = 4\binom{b-a}{a+2b}$, find the values of a and b. [3]

3. June/2022/Paper_21/No.8

In this question, i is a unit vector due east and j is a unit vector due north. Distances are measured in kilometres and time is measured in hours.

At 09 00, ship A leaves a point P with position vector $5\mathbf{i} + 16\mathbf{j}$ relative to an origin O. It sails with a constant speed of $6\sqrt{3}$ on a bearing of 120°.

(a) Show that the velocity vector of A is $9\mathbf{i} - 3\sqrt{3}\mathbf{j}$.

[2]

(b) Find the position vector of A at 1200.

[1]

a Partition of the second of t (c) At 1100 ship B leaves a point Q with position vector 29i + 16j. It sails with constant velocity $-12\sqrt{3}$ j. Write down the position vector of B, t hours after it starts sailing. [1]

(d) Find the distance between the two ships at 1200.

[3]

4. June/2022/Paper_22/No.6

(a) In this question, i is a unit vector due east and j is a unit vector due north.

A cyclist rides at a speed of 4 ms⁻¹ on a bearing of 015°. Write the velocity vector of the cyclist in the form $x\mathbf{i} + y\mathbf{j}$, where x and y are constants. [2]

(b) A vector of magnitude 6 on a bearing of 300° is added to a vector of magnitude 2 on a bearing of 230° to give a vector v. Find the magnitude and bearing of v. [5]

