UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS GCE Ordinary Level

MARK SCHEME for the May/June 2007 question paper

4024 MATHEMATICS

www.papacambridge.com

4024/02

Paper 2, maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2007 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Type of mark

In general:

- www.papacambridge.com (i) 'M' marks are awarded for any correct method applied to the appropriate numbers, though a numerical error may be involved.
 - a) Once earned they cannot be lost.
 - b) They are earned for a numerical statement which is usually explicit as regards the quantity to be found.
 - c) e.g. the use of a wrong formula, wrong trigonometrical ratio or misapplication of 'Pythagoras' is wrong method.
- (ii) 'A' marks are awarded for a numerically correct stage, for a correct result or for an answer lying within a specified range.
 - They are given only if the relevant 'M' mark has been earned. a)
 - They are not given for a correct result following an error in working. b)
- (iii) 'B' marks are independent of method and are usually awarded for an accurate result or statement.
- In graph or drawing questions some marks may carry a letter (e.g. G4 for drawing the (iv) graph, Q1 for quality, L3 for drawing loci) to make their identification easier.

Abbreviations which may be used in mark schemes or in comments on scripts:

A.G.	Answer given
b.o.d.	Benefit of doubt
c.a.o.	Correct answer only
(in)dep	(In) dependent
Ex.Q.	Extra question
1	Follow through
X	Further error made
I.S.W.	Ignore subsequent working
M.R.	Misread
o.e.	Or equivalent
O.W.	Omission of essential working
P.A.	Premature approximation
S.C.	Special case
s.o.i.	Seen or implied
S.O.S.	See other solution
t.&e.	Trial and error
W.W.	Without working (i.e. answer only seen)
W.W.W.	Without wrong working
(£) or (°)	Condone the omission of the £ or degree sign etc.

	F	Page	93	Mark Sche	me		Syl	a Paper	
					GCE O LEVEL – May/June 2007 4024 4024				
				1		1	1	any	
1	(a)	(i)	(a)	(\$)9.60	B 1		96c or 1.20	Mun. Paper 024 Paper 024 Paper 0 9.60 B1 40 B1 Image: Comment of the second	
			(b)	(\$) 23.20	B 1		12.40	B1 40	
		(ii)		$\frac{16-12}{0.8}$ or $\frac{4}{0.8}$ or 5	B 1		$\frac{16-1.2}{0.8}$ o.e.	B1	
				15	B 1	4		B1 12 B1	
	(b)	(i)		13(h) 16(m)	B 1				
		(ii)		$10\ 00 + \frac{22\ 56 - 10\ 00}{2}$ or $\frac{10\ 00 + 22\ 56}{2}$	M1				
				16 28 2 2 16 28	A1	3	Allow 16 h 28 n	nin	
	(c)			'figs $15 \times$ figs 2' OR 'figs 3'	B1				
				4800	B 1	2			
2	(a)			$\cos D\hat{B}E = \frac{1.5}{1.9} \text{ o.e.}$	M1			harks available for any ternative method.	
				37.86 - 37.9	A1	2			
	(b)			$\tan 68 = \frac{1.5}{AE} \text{ o.e.}$	M1		condone $\frac{\sin 22}{\sin 22}$	$=\frac{\sin 68}{1.5}$ for M1	
				AE = 0.61	A1	2	AE	1.5	
	(c)			$\frac{1.3}{\sin D} = \frac{1.9}{\sin 76}$ o.e.	M1				
				$\sin D = \frac{1.3\sin 76}{1.9}$	M1		dep on first M1		
				41.59 - 42	A1	3			
3	(a)			11	B2	2		uiv. unsimplified form	
				$\frac{11}{18a}$			or figs $^{11}/_{18}$ in fi	nal answer.	
	(b)			$b^2 - 3b + 8$ (final answer)	B2	2	final answer (wi	ected terms correct in ithout b^3 , b^4) tform without brackets.	
	(c)	(i)		127	B 1				
	(0)	(i) (ii)	(a)	132	B1				
		()	(b)	$n^3 + 2 + n$ o.e.	B1	3	e.g. accept $n^3 + 1$	3 + n - 1.	
	(d)	(i)		(y =) x - 38 o.e.	B 1		e.g. accept $x + 2$	2 - 60	
	(u)		(a)		B1		$\int x + 60 = 3 \times t dt$		
		. /		87	B 1				
			(b)	196 \int strict \int on positive x	B1	4	$J_2 \times \text{their } 87 +$	22	

	Page 4		Scheme May/ June 20	07	Sylla Paper 4024 Paper 2	
		GCE O LEVEL – May/June 2007 4024				
4 (a)		60	B1		1331	
	(ii)	9:4	B1		Accept 4 : 9 Not $^{9}/_{4}$ or 2.25 :	
	(iii)	165	B2		Sylla Raper 4024 800 Accept 4 : 9 Not $^{9}/_{4}$ or 2.25 : SC1 for $\frac{44 \times 360}{96}$ 44 × 100	
				4	or $\frac{44 \times 100}{26 \text{ to } 27}$	
					201027	
(b)	(i)	$D\hat{A}C = 33$	B1			
	(ii)	$D\hat{T}C = 24$	B1			
	(iii)	$A\hat{D}C = 57$	B1			
	(iv)	$A\hat{B}C = 123$	B1	4	✓ 180 – their 57	
5 (a)	(i)	Mode = 3	B1		If 6 is mentioned 3 must be the clearly intended answer	
	(ii)	Median = 4	B1			
	(iii)	$(2 \times 2) + (3 \times 6) + \dots$ (115) 4.6	M1 A1	4		
(b)	(i)	9/25	B1		Accept 36% or 0.36.	
	(ii)	1	B1	2	Accept 100%; Not $^{25}/_{25}$ or $^{1}/_{1}$	
(c)	(i)	$\frac{1}{50}$	B1			
	(ii)		M1		10 In the time line M1	
		$\frac{\frac{2}{25} \times \frac{5}{24}}{1}$	A1	3	$\frac{10}{600}$ or better implies M1	
		$\frac{1}{30}$				
5 (a)		Rotational (symmetry) Order 2, centre (3, 0) o.e.	B1 B1	2	-1 if line symmetry stated or implied.	
(b)	(i)	$\overrightarrow{CD} = \begin{pmatrix} 0\\ 8 \end{pmatrix}$	B1			
	(ii)	$\overrightarrow{OC} = \begin{pmatrix} 6\\ -4 \end{pmatrix}$	B1			
	(iii)	$\overrightarrow{CD} = \begin{pmatrix} 0\\8 \end{pmatrix}$ $\overrightarrow{OC} = \begin{pmatrix} 6\\-4 \end{pmatrix}$ $\overrightarrow{DO} = \begin{pmatrix} -6\\-4 \end{pmatrix}$	B1	3		
(c)		Isosceles	B1	1		
(d)		(32)	B1			

Page 5			Mark SchemeSylaPapeGCE O LEVEL – May/June 200740242			
						TOLT PC
7 (a)) (i)		$20 \times 7 \times 4$ $(3 \times)\frac{1}{2} \times \frac{4}{3} \times \pi \times 2.5^{3}$	M1 M1		Sylk: Paper 4024 Paper 560 implies M1 32.7 or 98.2 imply M1
			$461.7 \rightarrow 462 \text{ (cm}^3\text{)}$	A1	3	.9
	(ii)	2	216 (cm ³)	B1	1	
	(iii) ((a)	$(3\times)\frac{1}{2}\times 4\times \pi \times 2.5^2$	M1		39.2 implies M1
			$117.7 \rightarrow 118 \text{ (cm}^2\text{)}$	A1	2	
	($(20 \times 7 - 3 \times)\pi \times 2.5^{2}$ 81 \rightarrow 81.2 (cm ²)	M1 A1	2	19.6 or 58.9 implies M1
(b)) (i)		$V = kx^3 \Rightarrow k = \frac{1}{3} \text{ or } \left(\frac{6}{12}\right)^3 \text{ o.e. seen}$	B1		
			$71 \rightarrow 72 \text{ (cm}^3)$	B1	2	
	(ii)	ļ	$15.7 \to 16.4 \text{ (cm)}$	B2	2	
8 (a)		1	Correct scales 10 correct plots (within 1 mm) Smooth curve (not grossly thick)	S1 P1 C1	3	
(b))	4	5.7 to 5.9	T1	1	Must be clearly identified if written on the graph.
(c)) (i)		Negative value } 4 to 6 } final answer	G1 G1		Accept $\frac{a}{b}$ if, <i>a</i> , <i>b</i> integers
	(ii)	5	Speed or velocity.	G1	3	Accept 'rate of change of distance with time'.
(d)) (i) (i	(a) 1	15 (m)	D1		
	((b) 9	9 (m)	D1		
	(ii)		Straight line – <i>ve</i> slope Through (0, 15) and (6, 6)	L1 L1		(6, 6) within 2 mm
	(iii)	7	7 – 7.4	B1	5	Must be clearly identified if written on the graph.

Page 6			Mark Scheme			
		GCE O LEVEL – N	GCE O LEVEL – May/June 2007			
9 (a)		Attempt at cosine rule $BD^2 = 61^2 + 30^2 - 2.30.61 \cos 41$ = 1850 - 1860	M1 M1 A1		$\begin{array}{c c} & & & & & & \\ \hline & & & & & \\ \hline & & & & &$	
		BD = 43.1 to 43.12	A1	4		
(b)		$\frac{1}{2} \times 61 \times 30 \times \sin 41 (= 600.2)$	B2		A.G.	
(c)		Same height $\Rightarrow 45:30$ (or common vortex)	B1		A.G. Accept use of $1/_2 ab \sin C$.	
(d)		$900 \rightarrow 901 \text{ (cm}^2\text{)}$	B1	4		
(e)		$900 = \frac{1}{2} \times 43.1 \times CN$	M1		J their $900 = \frac{1}{2}$ their $BD \times CN$	
		41.7 - 41.9	A1	2		
(f)		$\sin e = \frac{15}{41.8}$	M1		$sin e = \frac{15}{\text{their}CN}$	
		21.0° – 21.1°	A1	2	SC1 for final answer $68.9^\circ \rightarrow 69^\circ$	
10 (a)		3	B1			
(b)		2 o r –2	B1+B1	3		
(c)	(i)	3	B1			
	(ii)	$-\frac{12}{5}$ o.e.	B1	2		
(d)		$3x^2 = 5y + 12$	M1		NB $x^2 = \frac{5}{3}y + 4$ or $\frac{\sqrt{5y + 12}}{3}$ score M1	
		$x = \sqrt{\frac{5y + 12}{3}} \text{o.e.}$	A1	2		
(e)	(i)	$\frac{t-3}{2} = \frac{3t^2 - 12}{5}$ o.e.			method must be clear and accurate	
		$\Rightarrow 5(t-3) = 2(3t^2 - 12)$ \Rightarrow Given result	B1	1	must reach $6t^2 - 5t - 9 (= 0)$	
	(ii)	For numerical $\frac{p+/-\sqrt{q}}{r}$			For 'completing the square'	
		p = +5 and r = 12	B1		$\left(t-\frac{5}{12}\right)^2$ B1 , $\frac{241}{144}$, B1	
		$q = 241$ of $\sqrt{q} = 15.5$ (s.o.i.)	B1			

Page	7	Mark Scheme GCE O LEVEL – May/June 2007			Sylla Apper 4024 Apper 2
11 (a) (i)		nslation 3 o.e.	B1 B1	2	Sylla Paper 4024 Paper 2 With 2 nd transformation BO Coords don't score With 2 nd transformation BO BO
(ii)		ation AC, centre (0, 1)	B1 B1	2	With 2 nd transformation BO BO
(iii)	$\begin{pmatrix} -1\\ 0 \end{pmatrix}$	$\begin{pmatrix} 1 & 0 \\ & 1 \end{pmatrix}$	B2	2	
(b) (i)	-2		B1		Allow ⁻² / ₁
(ii)	(3, 1	1)	B1	2	Allow $\begin{pmatrix} 3\\1 \end{pmatrix}$
(c) (i)	2		B1		
(ii)	$\frac{1}{2}$	$\begin{pmatrix} 4 & -3 \\ 2 & -1 \end{pmatrix}$ J I.S.W.	B1		$\int \frac{1}{\text{their } 2}$
(iii)		$ \begin{pmatrix} -1\frac{1}{2} \\ -\frac{1}{2} \end{pmatrix} \begin{pmatrix} 4 \\ -2 \end{pmatrix} \mathbf{J} \text{ OR} $	M1		J from their (c)(ii)
	$ \begin{pmatrix} -1\\ -2\\ \\ 11\\ 5 \end{pmatrix} $	$ \begin{pmatrix} 1 & 3 \\ 2 & 4 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 4 \\ -2 \end{pmatrix} $ $) \qquad x = 11, y = 5 $	A1	4	